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1 Introduction

Since its development in the late 1980s, the cointegrated vector autoregressive model has been
widely applied to the modelling of macroeconomic time series – a testament to its ability to
account for both the short- and long-run dynamics of these series in a unified way (Hendry,
1986; Engle and Granger, 1987; Johansen, 1995). By allowing for one or more autoregressive
roots at unity, the model is able to match two key features of these series: their high degree of
persistence, which gives rise to their characteristically ‘random wandering’ behaviour, and the
tendency for economically related series to move together, such that certain linear combinations
of these series – given by the cointegrating relationships – are markedly less persistent than the
series themselves. Dual to this, the model provides a framework for identifying the structural
shocks whose permanent effects generate these patterns of co-movement (Blanchard and Quah,
1989; King, Plosser, Stock, and Watson, 1991), which has been widely used in empirical studies.

Cointegrating relationships are often of intrinsic interest because macroeconomic theories
make definite predictions about the existence and magnitude of the long-run equilibrium rela-
tionships that these embody. (See e.g. Fuhrer and Moore, 1995; Maccini, Moore, and Schaller,
2004; Shiue and Keller, 2007.) For the purposes of estimating these relationships, and thus of
testing the predictions of such theories, a variety of efficient methods exist, such as FM-OLS
(Phillips and Hansen, 1990), DOLS (Stock and Watson, 1993), and (rank-imposed) maximum
likelihood estimation of the VAR itself (Johansen, 1995). However, all these methods rely on a
common assumption that the data is generated by a VAR with a certain number of exact unit
roots. Elliott (1998) showed that should this assumption fail only slightly – such that some roots
are merely ‘close’ but not exactly equal to unity – then inferences based on these methods can
suffer from severe size distortions. His findings are particularly disturbing because this problem
arises even in a VAR with roots that are ‘nearly’ unity, in the sense of lying within an O(n−1)

neighbourhood thereof, which is practically indistinguishable from the same model with exact
unit roots.

The present work addresses the problem posed by Elliott (1998): how can one perform valid
inference on the cointegrating relationships in an (S)VAR, when the dominant roots in that
model may not be exactly unity? In view of the significance of Elliott’s findings, it is perhaps
surprising that only a few previous contributions have also attempted to respond to them: most
notably Wright (2000), Magdalinos and Phillips (2009), Müller and Watson (2013), Franchi and
Johansen (2017), and Hwang and Valdés (2023). The approach taken in this paper is quite
different from that taken in those previous works, which have largely followed Elliott (1998) in
framing the problem as an inferential one, which might be solved merely by using appropriately
modified estimators and tests. Instead, our view is that the problem is at least as much one of
identification failure as it is of inference. Indeed, the usual definition of cointegration – in terms
of linear combinations of series that eliminate their common integrated components – becomes
meaningless as soon as the largest characteristic root in a VAR departs even slightly from unity.
(See Section 2.5 below for a further discussion of how our contribution relates to those previous
works.)

Our first task is thus to develop a characterisation of cointegration, based on the impulse
response function implied by the VAR, that remains meaningful in a model with some roots
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near but not necessarily equal to unity. In a p-dimensional VAR with q roots near unity, one
can always identify a p − q = r-dimensional subspace Sr, such that the decay of the impulse
response function in the directions contained in Sr is more rapid than it is in all other directions
(Sections 2.1–2.3). We term Sr the quasi-cointegrating space (QCS) of the VAR. When those
q roots are exactly unity, the QCS coincides exactly with the cointegrating space – and when
they are modelled as being local to unity, i.e. lying within a O(n−1) neighbourhood of unity, the
quasi-cointegrating relations are exactly those that eliminate the common near stochastic trends
from the system.

While quasi-cointegration is not the only conceivable way of extending cointegration to a
wider domain, our approach has the further advantage of maintaining the duality, that exists in an
SVAR with exact unit roots, between the identification of the long-run equilibrium relationships
between the series, and of the subvector of structural shocks whose common permanent effects
underpin those relationships. In this way, we simultaneously extend both cointegration, and the
use of long-run identifying restrictions, to an SVAR without exact unit roots, by allowing that a
subset of the structural shocks may have effects that are highly persistent, rather than permanent,
where persistence is understood in terms of the (relative) decay rate of the impact of those shocks
(Section 2.4). We thereby show how these long-run restrictions, which are often thought to be
available only in the case of exact unit roots (as noted e.g. in Kilian and Lütkepohl, 2017,
Sec. 10.5.1), remain a viable approach to identification even without this auxiliary assumption.

Inference on the QCS is complicated by the presence of nuisance parameters, which measure
the proximity of the dominant roots of the VAR to unity (Section 3). This problem is similar to
that which arises in predictive regressions, when the regressors have an unknown but possibly
high degree of persistence, such as has been studied e.g. by Cavanagh, Elliott, and Stock (1995),
Campbell and Yogo (2006), Jansson and Moreira (2006), Phillips and Lee (2013), Phillips (2014),
and Kostakis, Magdalinos, and Stamatogiannis (2015). In fact, we show that the problem of
inference on the QCS is asymptotically equivalent to that of inference in a predictive regression:
both converge to a common limiting experiment under an appropriate local parametrisation.
This equivalence permits methods that have been developed for predictive regression – for which
there are a great many – to be transposed the present setting. Our problem also fits within
the general framework of Elliott, Müller, and Watson (2015), and by adapting their approach
to the present setting, we obtain tests and confidence intervals that are effectively free of any
size distortions, while sacrificing little power relative to the efficient estimators, even when the
data is generated with exact unit roots. We also extend the mixed normality of the maximum-
likelihood estimator, when the correct number of unit roots are imposed, to the case where the
correct values of the dominant roots are imposed. This provides efficient likelihood-based tests
and confidence intervals for cases where one is willing to take a stand on the values of these
parameters.

The finite-sample performance of our procedure is evaluated through a series of simulation
exercises, and illustrated with an empirical application to the expectations theory of the term
structure (Section 4). Proofs of all technical results appear in the appendices.

Notation. All limits are taken as n→ ∞ unless otherwise stated. p→ and ⇝ respectively denote
convergence in probability and in distribution (weak convergence). We write ‘Xn(λ) ⇝ X(λ)
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on D[0, 1]’ to denote that {Xn} converges weakly to X, where these are considered as random
elements of D[0, 1], the space of cadlag functions [0, 1] → Rm, equipped with the uniform topo-
logy. ∥·∥ denotes the Euclidean norm on Rm; all matrix norms are induced by the corresponding
vector norms. For X a random variable and p ≥ 1, ∥X∥p := (E|X|p)1/p. M1/2 denotes the
principal square root of a positive semidefinite matrix M .

2 ‘Cointegration’ in a VAR without unit roots

2.1 Model and assumptions

The data generating process (DGP) for the observed series {yt}nt=1 is a kth order vector autore-
gressive (VAR) model, written in unobserved components form as

yt = µ+ δt+ xt xt =

k∑
i=1

Φixt−i + εt (2.1)

where εt, xt and yt are p-dimensional random vectors. The reduced-form shocks {εt} depend on
an underlying (p-dimensional) vector of i.i.d. and mutually uncorrelated structural shocks {wt},
via

εt = Υwt, (2.2)

so that (2.1)–(2.2) comprise a structural VAR (or SVAR). Let Φ(λ) := Iλk−
∑k

i=1Φiλ
k−i denote

the characteristic polynomial associated to (2.1); we shall refer to any λ for which detΦ(λ) = 0

as a ‘root of Φ’. Let Φ := (Φ1,Φ2, . . . ,Φk) ∈ Rp×kp. We generally maintain the following.

Assumption DGP. {yt}nt=1 and {xt}nt=1 are generated under (2.1)–(2.2), where:

DGP1 detΦ(λ) ̸= 0 for all |λ| > 1;

DGP2 {wt} is i.i.d. with Ewt = 0 and Ewtw
T
t = Ip, and Σ := ΥΥT is positive definite;

DGP3 x0 = x−1 = · · · = x−k+1 = 0.

We say that a dz-dimensional process {zt} is integrated of order zero, denoted zt ∼ I(0), if
there exists a deterministic process {µt} such that n−1/2

∑⌊nr⌋
s=1 (zs − µs) ⇝ B(r), for B a dz-

dimensional Brownian motion. Letting ∆d denote the dth order temporal differencing operator,
we say that zt is integrated of order d, denoted zt ∼ I(d), if ∆dzt ∼ I(0). We say {zt} is nearly
integrated if n−1/2(z⌊nr⌋ − µ⌊nr⌋)⇝

∫ r
0 eC(r−s)dB(s) for some C ∈ Rdz×dz .

2.2 Cointegration: the model with unit roots

Cointegration analysis is concerned with how linear combinations of I(d) processes can yield
processes that are themselves only I(d−b) for some 0 < b ≤ d. The reduced persistence and more
rapid mean reversion of the latter is interpreted as evidence of a long-run equilibrium relationship
between the original processes. Here, we focus exclusively on the special but practically important
case of I(1) processes having linear combinations that are I(0), reserving the term cointegration
exclusively for this case. As is well-known, the VAR model (2.1) is able to generate cointegrated
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I(1) processes under the following assumptions, which define the I(0)/I(1) cointegrated VAR
(CVAR) model.

Assumption CV.

CV1 Φ has q roots at (real) unity, and all others strictly inside the unit circle.

CV2 rkΦ(1) = p− q =: r

By the Granger–Johansen representation theorem (GJRT; see e.g. Johansen 1995, Thm 4.2
and Cor. 4.3), the preceding is necessary and sufficient for yt ∼ I(1), and for there to exist a
rank r matrix β ∈ Rp×r of cointegrating relationships, such that βTyt ∼ I(0). The matrix β

is identified only up to its column space, CS := spβ, termed the cointegrating space (CS). Two
equivalent characterisations of the cointegrating space, the first of which is definitional and the
second of which follows immediately from the GJRT, are

(C.i) bTyt ∼ I(0) if and only if b ∈ CS; and

(C.ii) CS = spΦ(1)T = {kerΦ(1)}⊥.

Our objective in this paper is to estimate the CS, or a space sharing its key properties, in a
setting more general than that of CV. For this purpose, we next recall two further characterisa-
tions of the CS that extend beyond the setting of CV, in a way that the preceding do not.1 The
third characterisation is in terms of the impulse response function of {yt} with respect to the
reduced-form or structural disturbances (i.e. {εs} or {ws}), denoted

IRFε
s :=

∂yt+s

∂εt
=
∂xt+s

∂εt
IRFw

s :=
∂yt+s

∂wt
= IRFε

s

∂wt

∂εt
= IRFε

sΥ,

For a given b ∈ Rp, the product bTIRFw
s gives the response of the linear combination bTyt+s to

ws. The rate at which bTIRFw
s (or bTIRFε

s) decays as the horizon s diverges provides a measure of
the persistence of the series {bTyt}. Now let m < p, and define Sm ⊂ Rp to be an m-dimensional
linear subspace such that for every b ∈ Sm and c /∈ Sm,

lim
s→∞

∥bTIRFw
s ∥

∥cTIRFw
s ∥

= 0. (2.3)

When it exists, Sm collects those m linear combinations of yt that are, in the sense of (2.3),
the least persistent. While IRFw

s evidently depends on Υ, the subspace Sm itself is invariant to
Υ, and hence to the scheme used to identify the structural shocks; indeed, we may equivalently
characterise Sm in terms of the reduced-form impulse responses, with IRFε

s taking the place of
IRFw

s in (2.3). Under CV, Sm with m = r exists and is unique, and moreover

(C.iii) CS = Sr

(see Lemma A.3). In other words, the cointegrating space is spanned by the vectors giving the
r least persistent linear combinations of yt.

1While the arguments that lead to these characterisations may be familiar to the reader, for completeness
formal statements and proofs of the results underlying the discussion that follows appear in Appendix A.
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(a) Cointegration (ρ = 1) (b) Quasi-cointegration (ρ < 1)

Figure 1: Lρ
LU and Lρ

ST, from (2.4), in the complex plane

Our final characterisation of the cointegrating space provides the basis for its estimation in
settings more general than CV; it derives from the application of a spectral decomposition to the
companion form representation of (2.1) (see Lemma A.1). Define the disjoint sets

Lρ
LU := {z ∈ C | |z| ≤ 1 and |z − 1| ≤ 1− ρ} Lρ

ST := {z ∈ C | |z| < ρ}, (2.4)

so that for a given ρ ≤ 1 (but close to unity), Lρ
LU defines a closed set of points on or inside the

unit complex circle, within a distance 1− ρ of real unity, and Lρ
ST defines an open ball of radius

ρ centred at zero, as depicted in Figure 1 separately for the cases where ρ < 1 and ρ = 1. Now
suppose that Φ has q roots in Lρ

LU and all others in Lρ
ST for some ρ ≤ 1. Under CV1 this setup

holds with ρ = 1, so that these sets are as in Figure 1(a). Since Lρ
LU and Lρ

ST are disjoint, there
exist real matrices

R
(p×kp)

:= [ RLU
(p×q)

RST ] L
(p×kp)

:= [ LLU
(p×q)

LST ] Λ
(kp×kp)

:= diag{ΛLU
(q×q)

, ΛST} (2.5)

such that: (a) the eigenvalues of ΛLU and ΛST correspond to the roots of Φ, and lie in Lρ
LU and

Lρ
ST respectively; (b) the triple (RLU,ΛLU, LLU) satisfies

RLUΛ
k
LU −

k∑
i=1

ΦiRLUΛ
k−i
LU = 0 Λk

LUL
T
LU −

k∑
i=1

Λk−i
LU LT

LUΦi = 0; (2.6)

and (c) the (reduced-form) impulse response function of yt is can be written as

∂yt+s

∂εt
= IRFε

s = RΛk−1+sLT = RLUΛ
k−1+s
LU LT

LU +RSTΛ
k−1+s
ST LT

ST, (2.7)

(see Lemma A.1 and the subsequent remarks). Under CV, we have ΛLU = Iq and rkRLU =

rkLLU = q (see Lemma A.3); it follows that the limits of the structural and reduced-form IRFs
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as the horizon s→ ∞ are

lim
s→∞

IRFw
s = RLUL

T
LUΥ, lim

s→∞
IRFε

s = RLUL
T
LU, (2.8)

yielding our final characterisation of the cointegrating space as

(C.iv) CS = (spRLU)
⊥.

Consistent with the discussion of Sr above, the matrix Υ – and thus the identification of the
structural shocks – plays no role here; the cointegrating space depends only on the column space
of the matrices appearing on the r.h.s. of (2.8), and so is invariant to post-multiplication by any
full-rank matrix.2

2.3 Cointegration without unit roots

Having thoroughly characterised cointegration in a VAR with q exact unit roots, we may now
return to our motivating problem: that of inference on the cointegrating relationships when those
q roots are allowed to be merely ‘near’ to (real) unity. As shown by Elliott (1998), even if we
consider the apparently favourable case of a sequence of models whose roots drift towards unity
as per ΛLU = I + n−1C, standard efficient estimators of the cointegrating relationships (such
as FM-OLS, DOLS and ML) are in general asymptotically biased, and the associated inferences
severely size distorted. This lack of robustness is particularly disturbing because it arises in
VARs that cannot be consistently distinguished from those with exact unit roots, preventing the
extent of this problem from being empirically evaluated.

Our view is that this problem is fundamentally one of identification, whose resolution demands
a characterisation of cointegration that retains its meaning over a wider domain than merely a
VAR with exact unit roots. Neither (C.i) nor (C.ii), which are implicitly utilised by the standard
estimators, are fit for this purpose. For if the largest q roots of Φ were strictly inside the unit
circle – as would now be permitted – then all linear combinations of yt would be I(0), Φ(1) would
have full rank, and hence both characterisations would identify the cointegrating space with the
whole of Rp. In contrast, both (C.iii) and (C.iv) would continue to identify that (r-dimensional)
subspace of linear combinations of {yt} having the least persistence, and thereby continue to
capture the long-run equilibrium relationships between these series. Accordingly, they provide a
sound basis on which to extend ‘cointegration’ to VARs without exact unit roots.

To this end, we now consider relaxing CV above as follows

Assumption QC. Let ρ ≤ 1 be given.

QC1 Φ has q roots in Lρ
LU, and all others in Lρ

ST.

Let ΛLU denote a real (q × q) matrix whose eigenvalues correspond to the roots of Φ that are in
Lρ

LU, and let RLU and LLU be p× q matrices that satisfy (2.5)–(2.7).

QC2 rkRLU = rkLLU = q and ΛLU is diagonalisable.
2As Example 2.2 below illustrates, if {εt} follows a finite-order MA process – such as typically arises when {yt}

is generated by a linear state-space model – then the autoregressive coefficients, and the associated characteristic
polynomial, alone carry all the information required to recover CS (and similarly for the quasi-cointegrating space
introduced in the next section).
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QC1 is plainly the analogue of CV1: whereas we previously assumed q roots at unity, we
now allow for q roots in the vicinity of unity; indeed CV is a special case of QC with ρ = 1

(Lemma A.3).3 By allowing for the possibility that ρ < 1, we move from panel (a) of Figure 1
to panel (b). The requirement that ΛLU be diagonalisable purposely rules out series that are
integrated of order two or higher (d’Autume, 1992), since these are also excluded under CV

(which as noted above implies ΛLU = Iq). For ρ < 1 but ‘close’ to unity, a model satisfying
QC will thus inherit the main qualitative features of the cointegrated VAR model: the high
persistence of {yt}, and the lesser persistence of r linear combinations of {yt}, understood in
terms of (2.3) above.

Accordingly, the subspace Sr spanned by the r ‘least persistent’ linear combinations of yt
retains an interpretation akin to that of the cointegrating space. These two objects coincide
exactly in a VAR with unit roots (recall (C.iii) above), but only the former remains meaningfully
interpretable when these roots are allowed to be merely near to unity, as entertained by QC.
That Sr is always well defined under our assumptions is guaranteed by the following, the proof
of which appears in Appendix A.

Proposition 2.1. Suppose DGP and QC hold. Then Sr = (spRLU)
⊥.

We henceforth term the elements of Sr the quasi-cointegrating relationships, and refer to Sr
itself as the quasi-cointegrating space (QCS), denoted

QCS := Sr = (spRLU)
⊥.

We continue to reserve the term cointegration for the VAR with q exact unit roots. We also let
β ∈ Rp×r denote a matrix of rank r whose columns span the QCS, and which therefore has the
property that βTRLU = 0.

There remains the question of how ρ might be chosen in practice as opposed to merely fixing
it at unity. To build intuition on the choice of ρ, we consider the reduced-form IRF (2.7), and
the allied decomposition

yt − µ− δt = xt = ΦLUzLU,t−1 +ΦSTzST,t−1 + εt (2.9)

where ΦLU = RLUΛ
k
LU and ΦST = RSTΛ

k
ST, and the ‘common trend’ zLU,t ∈ Rq and ‘transitory’

zST,t ∈ Rkp−q components follow

zLU,t = ΛLUzLU,t−1 + εLU,t εLU,t := LT
LUεt (2.10a)

zST,t = ΛSTzST,t−1 + εST,t εST,t := LT
STεt (2.10b)

under QC (see Lemma A.4). By imposing a lower bound on the eigenvalues of ΛLU, the value
ρ regulates the persistence of zLU,t. Equivalently, via (2.7), ρ is interpretable in terms of the
minimum half-life of the most persistent reduced-form shocks, εLU,t = LT

LUεt, that drive yt,
3The construction of Lρ

LU requires the q roots to be on or inside the unit circle. Though the theory developed
here could also accommodate explosive roots – simply by redefining Lρ

LU as {z ∈ C | |z − 1| ≤ 1 − ρ} – we have
deliberately excluded such roots to be consistent with the greater empirical relevance of stationary departures
from unit roots for most applications.
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as being h := − log 2/ log ρ periods. As discussed in the next section, LT
LUεt may be given a

structural interpretation, in terms of the subset of the structural shocks wt that are identified
(by the relevant macroeconomic theory) as having highly persistent, and possibly permanent,
effects.

In the extreme case where ρ = 1, zLU,t is an integrated process and these shocks will have
permanent effects, i.e. h = ∞; but in general reasonable finite choices for h will be available, with
smaller values of h (and hence of ρ) affording greater robustness to departures from exact unit
roots. This choice will itself depend on the application at hand. For example, in a macroeconomic
context it would be appropriate to allow that the most persistent shocks to {yt} may not have
permanent effects, but still have a half-life longer than the average duration of the business
cycle: with postwar US data of annual frequency, this corresponds to setting h = 8 and thus
ρ = 2−1/h = 0.917; or for quarterly data, ρ = 0.979.

2.4 Implications for long-run identifying restrictions

Up to this point, we have motivated quasi-cointegration in essentially descriptive terms, as a
means of extending the key time-series properties of cointegrated systems to a wider domain.
Of course, other characterisations of ‘cointegration’ or ‘long-run equilibria’ in time series models
might be developed, and used to extend the concept in alternative directions. From the point
of view of empirical macroeconomics, however, a particularly advantageous feature of quasi-
cointegration is that it is grounded in the SVAR, what is arguably the workhorse model in this
field (Kilian and Lütkepohl, 2017). Accordingly, as we shall now discuss, quasi-cointegration both
provides a framework for identifying structural shocks via long-run restrictions, and a means of
extracting testable long-run predictions from macroeconomic theories, that does not require one
to take a stand on the presence or absence of exact unit roots in the underlying SVAR – a matter
on which economic theory is largely silent. Indeed, it does so more generally in the VARMA, or
approximate VAR, representations implied by linear state-space models, and is thus relevant to
a broad class of (linearised) structural macroeconomic models.

2.4.1 Structural impulse response functions

A long-standing approach to the identification of structural IRFs involves ‘long-run restrictions’,
which demarcate shocks according to whether they are permitted to have permanent effects
(e.g. Blanchard and Quah, 1989; King et al., 1991; Gali, 1999; Christiano, Eichenbaum, and
Vigfusson, 2006). These typically derive from an underlying theoretical model in which one
or more state variables – such as total factor productivity or the natural rate of interest – are
assumed to have a stochastic trend. In equilibrium, these trends are imparted to some of the
endogenous variables, upon which the driving structural shocks must therefore have permanent
effects. When formulated in the setting of an SVAR, q stochastic trends manifest as q unit roots
and limiting impulse response matrices (2.8) of reduced rank, which identify the relevant subset
of the structural shocks as LT

LUεt.
Being expressed in terms of limiting impulse response matrices, these restrictions are generally

thought to require the presence of exact unit roots to provide a viable approach to identification
(see e.g. the discussion in Kilian and Lütkepohl, 2017, Sec. 10.5.1). However, since these restric-
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tions are dual to the cointegrating relations – the former relates to the column span, the latter
to the row span, of the long-run IRF (2.8) – the former are just as amenable to being extended
beyond the setting of exact unit roots as is the latter. As the examples below illustrate, if cer-
tain state variables are permitted to, more generally, follow a highly persistent but not exactly
integrated autoregressive process, we obtain a SVAR(MA) process with q roots near unity (see
also Campbell, 1994, for a discussion with q = 1). The decomposition (2.7), which is generally
available under QC, then provides a means of isolating the driving structural shocks from those
having comparatively transient effects, with LT

LUεt yielding q linear combinations of the former.

Example 2.1. Gali (1999) develops a stylised DSGE model of labour market dynamics in the
presence of a nominal rigidity, with two (i.i.d. and mutually independent) structural shocks: one,
ηt, to the underlying technology process {Zt}, which evolves as

logZt = ρz logZt−1 + ηt

with ρz = 1, i.e. as a random walk, and the other, ξt, to the growth rate of the money supply.
The model implies the following VAR(1) representation for log productivity at and hours nt,

xt :=

[
at

nt

]
= c+

[
ρz ρz(1− φ)

0 0

][
at−1

nt−1

]
+ φ−1

[
φ− 1 γ(φ− 1) + 1

1 −(1− γ)

][
ξt

ηt

]
(2.11)

=: c+Φxt−1 + εt.

When ρz = 1, only ηt has a permanent effect on the (log) level of productivity, which justifies an
empirical strategy of identifying the technology shock, in a bivariate SVAR of productivity and
hours, from the restriction that only it may have a permanent effect on productivity. However,
such a strategy is also viable when ρz is merely near unity, as can be seen by applying the
decomposition (2.7) to the VAR (2.11), which for h ≥ 1 yields

∂xt+h

∂εt
= Φh =

[
1

0

]
ρhz

[
1 1− φ

]
= λhLUrLUl

T
LU (2.12)

with λLU = ρz. In particular, irrespective of whether ρz = 1, lTLU recovers the technology shock,
since

lTLUεt = φ−1
[
1 1− φ

] [φ− 1 γ(φ− 1)− 1

1 −(1− γ)

][
ξt

ηt

]
= ηt.

From (2.12), we see that the implied quasi-cointegrating relationship is β = (0, 1)T ∈ (sp rLU)
⊥,

i.e. that βTxt = nt, consistent with the implication of the model that technology shocks only
have a long-lived effects on productivity, and not on hours.

The preceding example yields a VAR(1) with a reduced rank autoregressive matrix (with
eigenvalues at zero and ρz). However, the same points may be made more generally for linear
structural models that can be written in state-space form, which nests a wide range of structural
macroeconomic models, as follows. For simplicity, we consider a model with a first-order state
equation, but the conclusions carry over straightforwardly to higher-order processes.
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Example 2.2. Consider the state-space model

xt = Axt−1 +Bwt (2.13a)

yt = Cxt−1 +Dwt (2.13b)

in which each of yt, xt and wt are p-dimensional (cf. Fernández-Villaverde, Rubio-Ramirez,
Sargent, and Watson, 2007). The dynamics are governed by the state equation (2.13a): if one or
more of the state variables xt are integrated, then A will have (say) q unit eigenvalues and the
long-run IRF for xt, with respect to wt, will have rank q. Let us partition wt = (wT

1t, w
T
2t)

T, where
w1t is the q-dimensional subvector of shocks that have permanent effects on xt. In light of the
preceding discussion, it is not necessary to maintain that the persistence in the state variables is
generated by q exact unit roots, but only that the weaker requirement of QC should hold, with
A having q eigenvalues in Lρ

LU. Regardless of the specific values of these roots, by the analogue
of decomposition (2.5)–(2.7) for the state equation, we have

∂xt+s

∂wt
= RA,LUΛ

k−1+s
A,LU LT

A,LU +RA,STΛ
k−1+s
A,ST LT

A,ST,

and hence LT
A,LUBwt = Mw1t, for some M ∈ Rq×q having full rank, since only the impact of

these shocks decay at the slower rate regulated by the eigenvalues of ΛA,LU.
Under this weaker assumption, the implied VAR(MA) representation of the model yields the

same long-run identifying restrictions as when exact unit roots are present. Provided C and D

are invertible, (2.13) implies that

yt = Φyt−1 + εt −Ψεt−1 (2.14)

where Φ = CAC−1, Ψ = Φ − CBD−1, and εt := Dwt are the reduced-form shocks. Because
Φ and A are similar, the characteristic roots in the state equation (2.13a) coincide exactly with
those in (2.14); in particular, both systems are characterised by q roots in Lρ

LU, and LLU =

(C−1)TLA,LU. Because of the MA component, the reduced-form IRF takes the modified form
∂yt+h

∂εt
= Φh−1(Φ−Ψ), and it is no longer the case that LT

LUεt recovers the shocks w1t driving the
common persistent components; instead, we have

LT
LU(Φ−Ψ)εt = LT

A,LUC
−1[CBD−1]Dwt = LT

A,LUBwt =Mw1t, (2.15)

where LT
LU(Φ−Ψ) depends only on the reduced-form parameters.

In practice, (2.14) is rarely estimated; the usual approach is to approximate by a finite-order
VAR, truncating the l.h.s. of the representation

∞∑
i=0

Ψi(yt−i − Φyt−1−i) = εt (2.16)

at some finite k.4 Suppose that the eigenvalues of Ψ lie in Lρ
ST, so that these may be distinguished

4If Ψ, or equivalently A− BD−1C, is a nilpotent matrix, then there exists an exact finite order VAR repres-
entation for the system, of some order k∗, and the following claims – in particular (2.17) – hold for any k ≥ k∗,
rather than merely in the limit (cf. Ravenna, 2007, Cor. 2.2).

10
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from the q dominant eigenvalues of Φ. Letting Ψk−1(λ) := Ipλ
k−1 + Ψλk−2 + · · · + Ψk−1, the

truncated VAR(k) has characteristic polynomial Γ(λ) := Ψk(λ)(Ipλ − Φ), whose roots are the
eigenvalues of Φ (and therefore of A), and otherwise complex rotations of the eigenvalues of Ψ.
Then the truncated VAR satisfies QC, and if we apply the decomposition (2.7) to the truncated
VAR, then

LT
k,LUεt → LT

LU(Φ−Ψ)εt =Mw1t (2.17)

as k → ∞, where the equality holds by (2.15), and thus the correct shocks are recovered in the
limit, as the order of the VAR approximation grows. Remarkably, Rk,LU = RLU for all k, so the
quasi-cointegrating relations are carried exactly by the truncated VAR.

2.4.2 Long-run predictions of macroeconomic theories

A second respect in which quasi-contegration is empirically useful is in testing what might be
termed the long-run predictions of economic theories, which in an (S)VAR with exact unit roots
would be embodied in the cointegrating relations between the series. In a range of structural mod-
els, the dependence of the endogenous variables on a common set of state variables, combined with
an elevated degree of persistence in the mechanisms generating some of those variables, mani-
fests as a collection of long-run equilibrium relationships between those variables. If the theory
underlying the structural model makes definite predictions about the coefficients parametrising
these relationships, this provides a means of testing the theory, and cointegration analysis has
been widely applied to this end (such as to testing business cycle models, theories of purchasing
power parity, and the expectations theory of the term structure). Quasi-cointegration provides
a means of continuing to conduct tests of this kind without having to maintain the auxiliary
assumption of exact unit roots, by providing a means of expressing these long-run equilibrium
relationships in a way that is robust to departures from this assumption. The following example
illustrates this in detail, and we shall return to it in in our empirical application in Section 4.2.

Example 2.3. In its simplest form, the expectations theory of the term structure holds that
the yield on a (zero-coupon) bond should be equal to the sum of the expected future yields on
a shorter-dated bond (see e.g. Ljungqvist and Sargent, 2004, Ch. 13, for a textbook derivation
from a dynamic asset pricing model under risk neutrality). If the reduced-form process followed
by the yields on these two bonds follows a bivariate VAR with a single unit root, then it has long
been known that a major implication of this theory is that the the (annualised) rate of return
on these bonds should be cointegrated, with β = (1,−1)T (see e.g. Campbell and Shiller, 1987;
Carriero, Favero, and Kaminska, 2006). However, as we shall now show, that implied one-for-
one long-run equilibrium relationship is contingent on the assumption of an exact unit root – a
contingency also noted previously, albeit in a simplified setting in which one of the yields follows
a reduced-form AR(1) process, by Müller and Watson (2013).

Let ϱi,t denote the (annualised) yield on a zero-coupon bond with i years to maturity (in
year t), and suppose that we observe data on both a 1-year and an m-year bond, generated
by a VAR(k) that satisfies QC for some ρ ≤ 1, with δ = 0 and reduced form errors {εt}. The
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loglinearised form the expectations theory implies that

ϱm,t =
1

m

m−1∑
i=0

Etϱ1,t+i + ξt, (2.18)

where {ξt} captures the term premium. To keep (2.18) consistent with a VAR for ϱt := (ϱm,t, ϱ1,t),
{ξt} must be a linear process of the form ξt =

∑∞
i=0 ψiεt−i. In a setting with exact unit roots

(ρ = 1), one would assume that ξt ∼ I(0). To allow the theory to retain predictive content in our
more general setting (ρ ≤ 1), we make the analogous assumption that ξt is strictly less persistent
than ϱt itself, in the sense that ρ−hψh → 0 as h→ ∞.

Recognising that ϱ1,t+i =
∑i−1

k=0 λ
k∆λϱ1,t+i−k + λiϱ1,t, we may rewrite the preceding for any

λ ∈ [0, 1] as

ϱm,t − am(λ)ϱ1,t := ϱm,t −
1

m

1− λm

1− λ
ϱ1,t =

1

m

m−1∑
i=0

i−1∑
j=0

λjEt∆λϱ1,t+i−j + ξt. (2.19)

In particular, if we take λ = λLU (where λLU corresponds to the root nearest to unity in the
bivariate VAR representation of the yields), then by Lemma A.5 in Appendix A,

1

m

m−1∑
i=0

i−1∑
j=0

λjLUEt∆λLUϱ1,t+i−j = γ0β
Tϱt +

p−1∑
i=0

γi∆λLUϱt−i =: ςt

for some {γi}p−1
i=0 that depends on m, λLU and the VAR coefficients. By that same result,

(βTϱt,∆λLUϱt) also follows a VAR, whose roots lie in Lρ
ST. Thus ρ−h ∂ςt+h

∂εt
→ 0 as h → ∞, and

hence the same is true of ϱm,t − am(λLU)ϱ1,t. In this manner, one of the principal implications
of the expectations theory may be generalised. Rather than merely implying that yields ϱt :=
(ϱm,t, ϱ1,t) should be cointegrated (with unit coefficient), in a VAR with an exact unit root, the
theory more generally entails that these are quasi-cointegrated, with

β(λLU)
T = [1 −am(λLU)].

2.5 Connections to the literature

As noted in the introduction, there have been relatively few attempts to address the problem
identified by Elliott (1998), most notably Wright (2000), Magdalinos and Phillips (2009), Müller
and Watson (2013), Franchi and Johansen (2017), and Hwang and Valdés (2023). Having now
outlined our own approach to this problem, we may briefly explain how our work is situated
relative to those contributions.

Insofar as they also consider a VAR model with some characteristic roots near unity, Franchi
and Johansen (2017) relates closely to the present study. Their setting is a VAR model with one
lag, written in error correction form as

∆xt = (αβT + α1Γβ
T
1 )xt−1 + εt =: Πxt−1 + εt, (2.20)

where α, β ∈ Rp×r and α1, β1 ∈ Rp×q have full column rank, and Γ ∈ Rq×q. When Γ = 0, the
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model specialises exactly to the CVAR model of Section 2.2 with q unit roots and CS = spβ.
If some elements of Γ are non-zero, the cointegrated model becomes one with some roots near
but not equal to unity, and Π need no longer be of reduced rank. As the authors acknowledge,
if each of α1, β1 and Γ are freely varying, then β is not identified. They accordingly treat α1

and β1 as known, which restores identification and facilitates likelihood-based inference on each
of α, β and Γ. But while a priori knowledge of α1 and β1 may indeed be available in certain
situations, this seems unlikely to be the case in general; whereas in our approach, the criterion
(2.3) ensures that β remains identified even as the dominant roots depart from unity. Moreover,
with Γ fixed (and nonzero) in this model, it is unclear how β in (2.20) could be interpreted in
terms of long-run relationships between the elements of xt.

Magdalinos and Phillips (2009) consider Elliott’s (1998) problem in the context of the trian-
gular model

x1t = Ax2t + u1t (2.21a)

x2t = Rnx2,t−1 + u2t (2.21b)

where ut = (uT1t, u
T
2t)

T is a weakly dependent linear process. When Rn = Iq, this encompasses
the I(0)/I(1) CVAR model with q unit roots, but allows for a more general semiparametric
treatment of the model’s short-run dynamics. If Rn instead merely drifts towards Iq (possibly
at a slower rate than n−1) as n → ∞, then the authors show that it is still possible to obtain
an asymptotically mixed normal estimate of A, by using instruments that are constructed by
filtering x2t (what they term the ‘IVX’ estimator of A). However, the greater generality afforded
by the triangular model comes at the price that Rn → Iq is now necessary for identification of
A; if on the other hand Rn were fixed with eigenvalues strictly less than unity, then all linear
combinations of xt would be weakly dependent, leaving A unidentified. This is true generally of
approaches that rely on the triangular form, because of its agnosticism about the dynamics of
ut; thus the same point may be made in the context of Hwang and Valdés (2023), who (when
Rn = Iq + n−1C) consider an augmented regression estimator of (2.21a) using low frequency
transforms of the original data, and a Bonferroni-based approach to correct for the effect of C
on its limiting distribution.

Finally, Müller and Watson (2013) consider a very general setting in which the ‘common
trends’ in xt are permitted to belong to a broad family of processes. A consequence of this gener-
ality is that the authors conceptualise ‘cointegration’ in terms different from quasi-cointegration,
and the two definitions do not always agree. Essentially, Müller and Watson define xt to be
‘cointegrated’ with cointegrating relations β ∈ Rp×r, if n−1/2

∑⌊nr⌋
t=1 β

Txt converges weakly to
a Brownian motion, while the common trends n−1/2βT⊥x⌊nr⌋ converge weakly to a some cadlag
process (where β⊥ ∈ Rp×q has rkβ⊥ = q and βT⊥β = 0). In the context of our VAR model, where
QC holds for some ρ < 1, n−1/2

∑⌊nr⌋
t=1 xt converges weakly to a Brownian motion if all the roots

are strictly inside the unit circle; so in such a case there is no ‘cointegration’ in the foregoing
sense, even though quasi-cointegrating relationships would be defined. (On the other hand, if
the largest q roots of Φ are localised to unity at rate n−1, though not more slowly, then their
‘cointegrating’ vectors would coincide with our quasi-cointegrating vectors.) Regarding inference,
the authors construct a confidence set for β by inverting a stationarity test for βTxt, extending
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a idea originally due to Wright (2000). For a comparison of their tests with ours, in terms of size
and power, see the simulations in Section 4.1 below: these indicate that the price paid, in terms
of power, for robustness to a broader class of trend generating mechanisms (than are permitted
by the VAR), may be considerable.

Thus in relation to these papers, one of the major distinguishing contributions of our work
is to provide a means of identifying long-run equilibrium relationships that is well-defined for
a fixed parametrisation of the underlying (S)VAR; i.e. we do not rely on that VAR drifting
towards a model with exact unit roots (as n → ∞). Not only is our identifying criterion
(2.3) readily interpretable in terms of the relative persistence of either structural or reduced-
form impulse responses, but it also maintains the duality that exists, both with and without
exact unit roots, between the identification of long-run equilibrium relationships, and of those
structural shocks whose common persistent effects give rise to those relationships. As we will
discuss subsequently, an added benefit is that it reduces Elliott’s (1998) problem to one that is
asymptotically equivalent to inference in a multivariate predictive regression, a canonical problem
that has given rise to a rich literature.

3 Estimation and inference

3.1 Formulation of the problem

3.1.1 Model likelihood

As with the CS in a cointegrated VAR model, inference on the QCS in our more general setting
will be based on the normal model likelihood (or quasi-likelihood, if εt is not in fact normally
distributed). Recall that the model (2.1) may be rendered as

yt = m+ dt+

k∑
i=1

Φiyt−i + εt. (3.1)

To facilitate the exposition, we focus on the case where the intercept and trend parameters
(m, d) are unrestricted in (3.1), while maintaining that the data is generated under (2.1), so as
to exclude the possibility of a quadratic trend in yt. (For a discussion of alternative potential
treatments of the deterministic terms, see Section 3.5 below.)

The loglikelihood with (m, d) concentrated out – or equivalently, expressed in terms of a
maximal invariant for transformations of the form {yt} 7→ {m+ dt+ yt} – may be written as

ℓn(Φ,Σ) := −n
2
log(2π detΣ)−min

m,d

1

2

n∑
t=1

∥∥∥∥∥yt −m− dt−
k∑

i=1

Φiyt−i

∥∥∥∥∥
2

Σ−1

,

where ∥x∥2W := xTWx for x ∈ Rp andW ∈ Rp×p positive semidefinite. The QCS depends only on
Φ, and the main (asymptotic) results of this paper are not sensitive to the choice of estimator for
Σ, provided that it is consistent. To simplify our arguments, we shall therefore generally assume
that the unrestricted ML estimator Σ̂n, i.e. the OLS variance estimator, is used. Henceforth, let
ℓ∗n(Φ) := ℓn(Φ, Σ̂n); for convenience we shall refer to maximisers of ℓ∗n as ‘maximum likelihood
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estimators’.

3.1.2 QCS as a functional of the VAR coefficients

Under QC, the QCS is well-defined and has dimension q. Since any basis β ∈ Rp×q for the
QCS is only identified up to its column space, and has rank q, it is convenient to maintain the
normalisation

βT = [Ir −A], (3.2)

so that inference on the QCS reduces to inference on the elements of the matrix A ∈ Rr×q. (3.2)
is not restrictive – i.e. it is indeed merely a normalisation of β – if the QCS does not contain any
nonzero vectors whose first r elements are all zero, as will be the case if the elements of yt are
ordered appropriately. Since RLU has rank q and βTRLU = 0, (3.2) is equivalent to

RLU =

[
A

Iq

]
. (3.3)

Since the q roots in Lρ
LU are separated from the kp− q roots in Lρ

ST, the column space of RLU

depends smoothly on the VAR coefficients. To express this formally, let λi(Φ) denote the ith
root of the characteristic polynomial associated to the VAR with coefficients Φ, when these are
placed in descending order of modulus; and GT := [0q×r, Iq]. Define P ⊂ Rp×kp to be the set of
VAR coefficients such that: (i) |λq+1(Φ)| < |λq(Φ)|; (ii) there exist RLU ∈ Rp×q and ΛLU ∈ Rq×q

such that the eigenvalues of ΛLU are {λ1(Φ), . . . , λq(Φ)},

RLUΛ
k
LU −

k∑
i=1

ΦiRLUΛ
k−i
LU = 0; (3.4)

and (iii) rk{GTRLU} = q. Then P is open, and since GTRLU has full rank, we may choose
(RLU,ΛLU) to be consistent with the normalisation (3.3). The conditions defining P, together
with (3.3), implicitly define smooth (i.e. infinitely differentiable) maps RLU(Φ), A(Φ), and
ΛLU(Φ) on P (Lemma B.1). In light of this, inference on the QCS may be rephrased in terms of
inference on parameters A = A(Φ) defined by a smooth transformation of the VAR coefficients.

3.1.3 Parameter space for the near-unit roots

In a model with exact unit roots, efficient estimation of A requires the model to be estimated
under some of the restrictions implied by CV: for example, ML estimation of A proceeds under
the assumption that rkΦ(1) = r, as per CV2. In a setting with only I(1) series, this is equivalent
to maintaining q = p−r roots at real unity. Transposed to the present setting, with QC taking the
place of CV, we now require the model be estimated with q roots lying in Lρ

LU, as per QC1. This
entails both a choice of ρ, and the specification of an appropriate parameter space L ⊂ Rq×q

for ΛLU, such that it is diagonalisable (as per QC2), with eigenvalues lying in Lρ
LU.

When q = 1, ΛLU is scalar, so L = [ρ, 1] and only a lower bound ρ on the largest root of Φ
needs to be specified. A discussion of the considerations that might inform ρ were given at the
end of Section 2.3 (see also the application in Section 4.2 below). When q ≥ 2, L is instead a
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set of matrices with eigenvalues lying in the interval [ρ, 1]. While QC2 might suggest taking L to
be the subset Ld of real, diagonalisable q × q matrices, a potential difficulty with Ld is that is
that some non-diagonalisable matrices are in its closure, as can be seen e.g. by taking the limit
of [ λ+ϵ 1

0 λ−ϵ ] as ϵ→ 0. This would effectively permit departures from the I(0)/I(1) cointegrated
VAR model in the direction of a model with some I(2) components, something that we wish
to avoid here. The set of either normal (Ln) or symmetric (Ls) matrices with eigenvalues in
[ρ, 1] would thus be more appropriate choices for L , since each give a closed subset of the set
of diagonalisable matrices, with the principal difference between the two being that the former
allows for complex eigenvalues.

3.1.4 Local-to-unity asymptotics

The QCS, and the associated coefficient matrix A, remain identified so long as the roots of Φ
separate as prescribed by QC. In particular, there is no requirement that the roots in Lρ

LU should
drift towards unity at any rate, as n→ ∞. However, as will become evident below, the proximity
of those q largest roots to unity affects the distributions of estimators and test statistics, even
in very large samples. We therefore need to work with a sequence of models that preserves this
dependence in the limit, and avoids the discontinuities in the asymptotics that would otherwise
arise at exact unit roots. We shall accordingly study the large-sample behaviour of the likelihood,
and of derived estimators and test statistics, under

Assumption LOC. {(yt, xt)}nt=1 is generated per DGP with Φ = Φn, for {Φn} ⊂ P such that:

LOC1 for some C ∈ Rq×q with non-positive eigenvalues,

ΛLU(Φn) = Λn,LU := Iq + n−1C; (3.5)

LOC2 RLU(Φn) = [ AIq ] for some A ∈ Rr×q ; and

letting Rn,ST, Λn,ST and Ln = [Ln,LU, Ln,ST] be such that (2.5)–(2.7) hold for each n:

LOC3 Rn,ST = RST and Λn,ST = ΛST are fixed, and the eigenvalues of the latter lie strictly
inside the complex unit circle; and

LOC4 LLU := limn→∞ Ln,LU has full column rank.

Under LOC, we may choose a ρ < 1 such that QC holds for all n sufficiently large; LOC may thus
be regarded as capturing (sequences of) VAR models that are both in the immediate vicinity of
a cointegrated VAR with unit roots, while also satisfying those regularity conditions that ensure
the QCS is well-defined. The localisation (3.5) moreover entails a sharper delineation between
the common trend and transitory components appearing in the implied decomposition of yt in
(2.9), since we now have the joint weak convergences

n−1/2
n∑

t=1

εt ⇝ E(r) n−1/2zLU,⌊nr⌋ ⇝
∫ r

0
eC(r−s)LT

LUdE(s) =: ZC(r), (3.6)
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on D[0, 1], for E a p-dimensional Brownian motion with variance Σ; and thus

n−1/2x⌊nr⌋ = Φn,LUn
−1/2zLU,⌊nr⌋ + op(1) =d Φn,LUZC(r) + op(1) (3.7)

so that zLU,t and xt are nearly integrated. Although Φn,LU = RLUΛ
k
n,LU depends on n, its column

space does not, and
βTxt = βTΦSTzST,t−1 + βTεt ∼ I(0). (3.8)

Thus, analogously to the GJRT, (2.9) decomposes xt, and therefore also yt (upon detrending),
into the sum of a nearly integrated component and an I(0) component; the quasi-cointegrating
relations are precisely those that eliminate the nearly integrated common trends from yt.

3.2 Asymptotics of the loglikelihood ratio process

We first consider the asymptotic behaviour of the loglikelihood ratio process, under a local
reparametrisation of the VAR given by

π := πn(Φ) := n vec

[
A(Φ)−A(Φn)

ΛLU(Φ)− ΛLU(Φn)

]
, f := fn(Φ) := n1/2 vec{(Φ−Φn)Rn,ST}; (3.9)

where {Φn} is as in LOC, and Rn,ST is a kp × (kp − q) matrix defined in Appendix C. (3.9)
effectively isolates the signal from the nearly integrated and I(0) components of xt, as given in
(3.7)–(3.8), with only the former carrying (asymptotically) information relevant to the estimation
of A and ΛLU. These parameters will thus enjoy elevated rate of convergence, relative to the other
components of the VAR, just as is familiar from the VAR with exact unit roots. In connection
with (3.9), let

K :=

[
βTRST(I − ΛST)

−1LT
ST

LT
LU

]
=:

[
J
LT

LU

]
. (3.10)

denote a component of limiting Jacobian matrix for πn(Φ) at Φ = Φn.
The asymptotics reveal the close correspondence that exists between the problem of inference

on (A,ΛLU) in a quasi-cointegrated VAR, and of inference in a predictive regression model with
highly persistent regressors. This is of interest because the latter is a canonical problem that has
received considerable attention in the literature, where a variety of inferential procedures with
good size and power properties have been developed. A major implication of our next result is
that such procedures should enjoy similar properties, once transposed to our setting. While we
do not develop this possibility further here, the good properties found for the Elliott et al. (2015)
procedure in Section 4.1 are of little surprise, in view of the similar performance enjoyed by that
method in a predictive regression.

By a predictive regression model, we mean a model of the form

yPR,t = my + dyt+APRzPR,t−1 + ξy,t (3.11a)

zPR,t = mz + dzt+ ΛPRzPR,t−1 + ξz,t (3.11b)

where {yPR,t} and {zPR,t} respectively take values in Rr and Rq. To complete the specification
of the model, suppose the following:
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Assumption PR. {yPR,t}nt=1 and {zPR,t}nt=1 are generated under (3.11), where

PR1 APR ∈ Rr×q and ΛPR = Iq + n−1C, for C as in LOC;

PR2 zPR,0 = 0, my = dy = 0 and mz = dz = 0;

PR3 ξt := (ξTy,t, ξ
T
z,t)

T ∼i.i.d. N [0,Ω].

To simplify the discussion, the covariance matrix Ω is assumed to be known. Under PR3, the
model loglikelihood is

ℓPR
n (A,Λ) := −n

2
log(2π detΩ)−min

m,d

1

2

n∑
t=1

∥∥∥∥∥
[
yPR,t

zPR,t

]
−

[
my

mz

]
−

[
dy

dt

]
t−

[
A

Λ

]
zPR,t−1

∥∥∥∥∥
2

Ω−1

.

Let Z̄C(r) denote the residual of an L2[0, 1] projection of each sample path of ZC in (3.6) onto
a constant and linear trend. The proof of the next result, and of all other theorems, appears in
Appendix E.

Theorem 3.1. Suppose that:

(i) {yt} is generated under LOC. Let ℓn(π, f) := ℓn(Φ,Σ), where π = πn(Φ) and f = fn(Φ)

as in (3.9), and let ℓ∗n(π) := maxπ(Φ)=π ℓ
∗
n(Φ).

(ii) {(yPR,t, zPR,t)} is generated under PR, with Ω = KΣKT. Let ℓPR
n (π) := ℓPR

n (A,Λ), where

π = n vec

[
A−APR

Λ− (Iq + n−1C)

]
.

Then the finite-dimensional distributions of each of {ℓn(π, f) − ℓn(0, f)}, {ℓ∗n(π) − ℓ∗n(0)} and
{ℓPR

n (π)− ℓPR
n (0)} converge to those of

ST
ππ − 1

2π
THππ (3.12)

where, for W a p-dimensional standard Brownian motion on [0, 1],

Sπ :=

∫ 1

0
[Z̄C(r)⊗ (KΣKT)−1/2dW (r)] Hπ :=

∫
Z̄CZ̄

T
C ⊗ (KΣKT)−1. (3.13)

Up to a term that depends only on f , the likelihood ratio processes {ℓn(π, f) − ℓn(0, 0)}
and {ℓPR

n (π)− ℓPR
n (0)} thus share the same distributional limit; since this limit obtains under all

local-to-unity sequences permitted by LOC and PR, it is evident that these models converge to the
same limiting experiment, in the sense of van der Vaart (1998, Def. 9.1). This substantiates the
asymptotic equivalence between the problem of inference on (A,ΛLU) in the VAR (2.1)–(2.2), and
of inference on (APR,ΛPR) in a predictive regression, in the vicinity of unit roots. That the weak
limit in (3.12) is also shared by {ℓ∗n(π)−ℓn(0)} is of practical importance for the likelihood-based
tests discussed below.
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3.3 Likelihood-based inference

3.3.1 ML estimators

We next turn to the ML estimators of A and ΛLU. Let the unrestricted and restricted estimators
of Φ, the latter with ΛLU(Φ) = Λ0 ∈ Rq×q imposed, be denoted as

Φ̂n := argmax
Φ∈Rp×kp

ℓ∗n(Φ) Φ̂n|Λ0
:= argmax

{Φ∈P|ΛLU(Φ)=Λ0}
ℓ∗n(Φ).

(For details of how to compute Φ̂n|Λ0
in practice, see Appendix F.) Then Ân := A(Φ̂n) and

Λ̂n,LU := ΛLU(Φ̂n) are the associated unrestricted MLEs of A and ΛLU, and Ân|Λ0
:= A(Φ̂n|Λ0

)

the MLE of A under ΛLU(Φ) = Λ0.
To state our main result on these estimators, let LLU,⊥ be any p×r matrix spanning (spLLU)

⊥;
one possible choice is α := limn→∞Φn(1)β(β

Tβ)−1. Recall that a random vector η is mixed
normal with mean zero and conditional variance V , denoted η ∼ MN[0, V ], if EeiτTη = Ee−

1
2
τTV τ .

Theorem 3.2. Suppose LOC holds. Then

(i) Ân := A(Φ̂n) and Λ̂n,LU := ΛLU(Φ̂n) satisfy5

n

[
Ân −A

Λ̂n,LU − Λn,LU

]
⇝ K

∫
(dE)Z̄T

C

(∫
Z̄CZ̄

T
C

)−1

(ii) n vec(Ân|Λn,LU −A)⇝ MN[0, Vzz ⊗ Vεε], where

Vzz ⊗ Vεε :=

(∫
Z̄CZ̄

T
C

)−1

⊗ JLLU,⊥(L
T
LU,⊥Σ

−1LLU,⊥)
−1LT

LU,⊥J T (3.14)

=

(∫
Z̄CZ̄

T
C

)−1

⊗ (αTΣ−1α)−1. (3.15)

The limiting distribution of the unrestricted ML estimator of A thus depends on C, which
cannot be consistently estimated. However, if the correct value of ΛLU is imposed, then the
restricted ML estimator Ân|Λn,LU is asymptotically mixed normal. In the special case where
ΛLU = Iq, this exactly replicates the mixed normality of the ML estimates of the cointegrating
relations, when the correct cointegrating rank is imposed (see e.g. Johansen, 1995, Thm. 13.3).
In this manner, the preceding theorem generalises that mixed normality beyond the setting of
a VAR with exact unit roots. Though we shall not give the proof here, it may be shown that
with the correct ΛLU imposed, the model loglikelihood is locally asymptotically mixed normal
(LAMN), so that Ân|Λn,LU also inherits the large-sample efficiency properties familiar from the
case of exact unit roots (Phillips, 1991).

5Recall Z̄C(r) = ZC(r)−µ0 −µ1r, for µ0 :=
∫ 1

0
(4− 6s)B(s) ds and µ1 =

∫ 1

0
(−6+12s)B(s) ds (see e.g. Elliott,

1998, p. 151). Since Z̄C is not adapted, an expression such as
∫
Z̄C(dE)T should be understood as a convenient

shorthand for
∫
ZC(dE)T − µ0

∫
(dE)T − µ1

∫
r(dE)T.
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3.3.2 Likelihood ratio tests

Though part (i) of the preceding provides a basis for inference on A using Wald-type statistics,
there are some difficulties with this approach in practice, because there is no guarantee that the
characteristic roots of the unrestrictedly estimated VAR will separate in the manner prescribed
by QC. Since these roots come in conjugate pairs, it may well be the case that when ordered by
their complex modulus (or proximity to real unity), the qth and (q + 1)th roots will be complex
conjugates, preventing us from isolating the first q roots from the rest – a problem exacerbated
by typically imprecise estimation of these roots (Onatski and Uhlig, 2012). A superior approach
therefore utilises (quasi-) likelihood ratio (LR) tests to perform inference on both ΛLU and A;
specifically the statistics

LRn(Λ0) := 2

[
max

{Φ∈P|ΛLU(Φ)∈L }
ℓ∗n(Φ)− max

{Φ∈P|ΛLU(Φ)=Λ0}
ℓ∗n(Φ)

]
(3.16a)

LRn(a0; Λ0) := 2

[
max

{Φ∈P|ΛLU(Φ)=Λ0}
ℓ∗n(Φ)− max

{Φ∈P|ΛLU(Φ)=Λ0,aij(Φ)=a0}
ℓ∗n(Φ)

]
, (3.16b)

where L is the parameter space for ΛLU (see Section 3.1.3 above). LRn(Λ0) is the usual likelihood
ratio test for H0 : ΛLU(Φ) = Λ0, while LRn(a0; Λ0) corresponds to the likelihood ratio test of
H0 : aij(Φ) = a0, when ΛLU(Φ) = Λ0 is maintained under both the null and the alternative. Our
next result provides the asymptotic distributions of these test statistics; for given C ∈ Rq×q, let

C∗ := (LT
LUΣLLU)

−1/2C(LT
LUΣLLU)

1/2.

Theorem 3.3. Suppose LOC holds. Then

LRn(Λn,LU)⇝ tr

{∫
(dW∗)Z̄

T
C∗

(∫
Z̄C∗Z̄

T
C∗

)−1 ∫
Z̄C∗(dW∗)

T

}
(3.17)

where W∗ ∼ BM(Iq), Z̄C∗ is the residual from an L2[0, 1] projection of the sample paths of
ZC∗(r) :=

∫ r
0 eC∗(r−s) dW∗(s) onto a constant and linear trend; and

LRn[aij(Φn); Λn,LU]⇝ χ2
1. (3.18)

3.3.3 Nearly optimal tests

Elliott et al. (2015) consider hypothesis tests that are affected by nuisance parameters, in settings
where the limiting experiment is not a Gaussian shift experiment (with an unrestricted parameter
space), such the usual asymptotic optimality enjoyed by ML-based inference does not hold. In
view of Theorem 3.1, our problem falls within their framework: the correspondence can be most
easily seen when, analogously to their equation (1), we seek to test hypotheses of the form

H0 : A = A0, ΛLU ∈ L against H1 : A ̸= A0, ΛLU ∈ L ,
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so that A is the parameter of interest, and ΛLU the nuisance parameter.6 Their tests have the
following Neyman–Pearson form,

NPn(A0) := 1

{∫
Rr×q×L

eℓ
∗
n(A,Λ)F1(dA,dΛ) > cvα

∫
L
eℓ

∗
n(A0,Λ)F0(A0, dΛ)

}
(3.19)

where ℓ∗n(A,Λ) := max{Φ∈P|ΛLU(Φ)=Λ,A(Φ)=A} ℓ
∗
n(Φ), and F0 and F1 are distributions that re-

spectively concentrate on those subsets of the parameter space for (A,Λ) consistent with the null
and the alternative.

As discussed by Elliott et al. (2015), the level α test that maximises weighted average power
(WAP; against the F1-weighted alternative) results when F0 and cvα are such that∫

L
P(A0,Λ){NPn(A0) = 1}F0(dΛ) = α, P(A0,Λ){NPn(A0) = 1} ≤ α, ∀Λ ∈ L ; (3.20)

in which case F0 is the least favourable distribution (LFD) for the testing problem (for the given
F1-weighed alternative). While exact calculation of the LFD is infeasible, the authors provide
an algorithm that delivers an F0 (and associated cvα) that approximates the properties of the
LFD, in the sense of their Definition 1; the associated test is thus ‘nearly optimal’ in the WAP
sense against F1.

Their methodology may be applied to the present setting, with Theorem 3.1 indicating the
manner in which the limiting experiment depends on the model parameters (Φ,Σ). In particular,
Theorem 3.1 justifies simulating from an appropriately parametrised VAR(1) model to approx-
imate the distribution of the likelihood ratio process, and particularly the probabilities in (3.20),
which are the key input for the determination of F0 and cvα (see Appendix F for details).7 While
the application to our problem is in many respects similar to their application to a predictive
regression model (Elliott et al., 2015, Sec. 5.3), with both problems sharing a common limiting
experiment, an important difference arises in that we impose a lower bound ρ for the q largest
roots, for reasons discussed in Section 2.3 above. Accordingly, we do not develop a ‘switching
test’ of the form that would be needed to accommodate a parametrisation of the model lying
deeper in the stationary region.

More generally, the same approach may be taken to testing hypotheses that restrict only a
subset of the elements of A under the null, with the remaining elements being concentrated out.
While the optimality properties of the resultant test are less clear in that case, the procedure
still yields a test of asymptotic level α. For example, a test of H0 : aij(Φ) = a0,ΛLU ∈ L , for a

6More precisely, this correspondence emerges asymptotically, under the local parametrisation (3.9), with π
playing the role of (A,ΛLU). Though the other components of the VAR, represented by f , are technically also
nuisance parameters, the separability of the limiting experiment in π and f entails that these asymptotically play
no role in the testing problem. Concentrating these parameters out of the likelihood thus leads to test statistics
with the same limiting distribution as if these other components were known a priori.

7Unlike Elliott et al. (2015), we have phrased the testing problem in terms of the ‘original’ model parameters,
rather than the local parameters that appear in the limiting experiment. Since the approximate LFD and the
weighted alternative are defined in terms of the local parameters, F0 and F1 in (3.19) should be indexed by n so
as to correspond to (sample-size independent) distributions on the local parameter space. In our implementation,
where F0 is obtained by simulating from the finite-sample distribution of a suitably-chosen model, such details are
handled implicitly. That this construction yields a test that is asymptotically of size α follows from Theorem 3.1
and the continuous mapping theorem (with the finiteness of the supports of F0 and F1 implying that the finite-
dimensional convergence obtained in that result is sufficient here): a rigorous development is not given here, to
keep the paper to a manageable length.

21



cointegration without unit roots

given (i, j), could be constructed as

NPn(a0) := 1

{∫
R×L

eℓ
∗
n(a,Λ)F1(da,dΛ) > cvα

∫
L
eℓ

∗
n(a0,Λ)F0(a0,dΛ)

}
(3.21)

where now ℓ∗n(a,Λ) := max{Φ∈P|ΛLU(Φ)=Λ,aij(Φ)=a} ℓ
∗
n(Φ). F0 and F1 concentrate respectively

on subsets of the parameter space for aij and ΛLU consistent with the null and the alternative,
with the remaining elements of A replaced (in a finite sample) by consistent estimators.

3.4 Confidence intervals

Suppose now that interest centres on a given element aij of A. The preceding suggests a number
of possible ways for constructing asymptotically valid 1− α confidence intervals for aij . Firstly,
if ΛLU were known to be some Λ0 ∈ L , then by Theorem 3.3 a confidence interval based on the
efficient (likelihood ratio) test may be constructed conditionally on that Λ0, as

Caij |Λ0
(α) := {a0 ∈ R | LRn(a0; Λ0) ≤ χ2

1,1−α}. (3.22)

Caij |Λ0
may also be of interest in cases where ΛLU is not plausibly known a priori, insofar as a

plot of these intervals illustrates the potential sensitivity (or robustness) of inferences on aij to
departures from the assumption of exact unit roots. (This is particularly feasible when q = 1:
see Section 4.2 for an illustration).

In the more realistic case that ΛLU is unknown, a well-established approach to inference is
based on Bonferroni’s inequality, which involves constructing a first-stage confidence interval for
ΛLU on the basis of the LR test in Theorem 3.3, as per

CΛ(α1) := {Λ0 ∈ L | LRn(Λ0) ≤ c1−α1 [n(Λ0 − Iq)]}

where cτ (C) denotes the τth quantile of the distribution of (3.17), under the local parameter C.
By construction, for any α1 + α2 ≤ α, the set

CB(α1, α2) :=
⋃

Λ0∈CΛ(α1)

Caij |Λ0
(α2),

has asymptotic level α. Since this yields inferences on aij that are necessarily conservative,
refinements along lines proposed by Cavanagh et al. (1995) and Campbell and Yogo (2006)
in the context of predictive regression (an approach that has since been further extended by
McCloskey, 2017) may also be considered here.

However, we have found in practice that the likelihood ratio test of ΛLU generally lacks
power, with the associated confidence set CΛ(α1) being unsuitably wide. In general, much tighter
intervals can be found on the basis of the nearly optimal test of Elliott et al. (2015),

CNP(α) := {a0 ∈ R | NPn(a0) = 0}.

where NPn(a0) is defined in (3.21) above.
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3.5 Deterministic terms

For the cointegrated VAR with exact unit roots, Johansen (1995, Sec. 5.7) develops a hierarchy
of models (in his notation, H2 ⊂ H∗

1 ⊂ H1 ⊂ H∗ ⊂ H) ordered according to their treatment of
the deterministic terms in form (3.1) of the model. In our more general setting where ΛLU = Iq

is not required, these models take on an altered expression, and not all are realisable through
restrictions on the model parameters. To discuss how we treat might handle deterministic terms
in our setting, and their implications for inference, we first recall that the mapping from the
DGP (2.1) to form (3.1) of the VAR implies

m = Φ(1)µ+Ψδ, d = Φ(1)δ,

where Ψ :=
∑k

i=1 iΦi. Three important cases are the following:8

(i) Both µ and δ are unrestricted. The reduced form VAR (3.1) should be estimated with
(m, d) unrestricted (as per Johansen’s model H). Our asymptotics assume that the DGP
is the structural VAR (2.1), so that d = Φ(1)δ holds even though this is not imposed in
estimation. Indeed, it would not be possible to impose the restriction d ∈ spΦ(1) (as per
Johansen’s H∗) in the present setting, because whenever the largest roots of Φ are not
exactly unity, Φ(1) has full rank. Thus d = Φ(1)δ would be effectively unrestricted, and a
model with exact unit roots and d /∈ Φ(1) would lie in the closure of the parameter space.

(ii) δ = 0, but µ is unrestricted. The VAR (3.1) should be estimated with only a constant
(as in Johansen’s model H1). Under the assumption that the DGP is the structural VAR
with δ = 0, yt has no drift. The limit theorems given in Theorems 3.1–3.3 must be
amended in this case, by replacing each instance of Z̄C with the demeaned diffusion process
ZC(r)−

∫ 1
0 ZC(s) ds. (Imposing the restriction that m ∈ spΦ(1), as per Johansen’s model

H∗
1 , is impossible in our setting.)

(iii) µ = δ = 0. The VAR (3.1) should be estimated with m = d = 0 (as per Johansen’s model
H2); in Theorems 3.1–3.3, Z̄C is replaced by ZC .

In light of this, our recommendation is to estimate the model with an unrestricted intercept
and trend if there is a discernable linear trend in the data, and to otherwise estimate the model
with only an intercept.

4 Finite-sample performance

4.1 Simulations

We conducted simulations to evaluate the finite-sample performance of NPn(a), in terms of size
and power. For this exercise, natural comparisons are with the likelihood ratio test LRn(a; Iq)

8There is a fourth case, which sits in between the first two, in which a linear trend is present in yt but is
assumed to be eliminated by the quasi-cointegrating relationships, whence βTδ = 0. Since β ∈ (spRLU)

⊥, this
is equivalent to requiring d ∈ spΦ(1)RLU. If we assume exact unit roots, then Φ(1)RLU = 0 (from (2.6) above)
and this restriction can be imposed simply by estimating the VAR (3.1) without a trend (as in Johansen’s model
H1). However, in our setting with non-unit roots this restriction cannot be so simply expressed, because Φ(1)
may have full rank; all that can be said is that d ∈ spΦ(1)RLU. Estimation under this restriction is accordingly
more involved, and we leave the development of the asymptotics of our procedure in this case for future work.
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corresponding to the efficient rank-imposed MLE (Johansen, 1995), and with the low-frequency
stationarity test ST n(a) of Müller and Watson (2013), constructed with b = 10/r1/2 in their
equation (25), as per their recommendations.

The DGP in the simulation design is a bivariate (p = 2) VAR(2) with one root near unity
(q = 1), is parametrised in terms of the underlying (R,Λ) matrices (see Appendix A) as

RLU =

[
1

1

]
RST =

[
0 1 1

1 0 2

]
λLU = λLU,0 ΛST = diag{0.5, 0.4, 0.3}

from which the implied VAR coefficients may be recovered (via Lemma A.1(iv)). The implied
quasi-cointegrating vector is β0 = [1,−a0]T with a0 = 1. Across the simulation designs, we vary:

(i) the largest root λLU,0 over {0.96, 0.98, 1.00}; and

(ii) the matrix Σ such that Ω = KΣKT = [ 1 ωSL
ωSL 1 ], for ωSL ∈ {−0.9,−0.8, . . . , 0.9};

for each of which we generate 20, 000 samples of length n = 200. In implementing NPn(a), we
set a lower bound of ρ = 0.9 on L = [ρ, 1], the parameter space for λLU. When estimating the
VAR, we include a constant, and select the lag length by the Akaike information criterion (AIC;
with a maximum lag order of 10). The nominal level of all tests is α = 0.05.

The role of ωSL in regulating the extent of the size distortion in LRn(a; 1) is clearly evident
in panels (a)–(c) of Figure 2. That the size distortion disappears at ωSL = 0 is entirely consistent
with Theorem 3.1, which implies that in this case the Hessian of the limiting loglikelihood
is diagonal, and that the part of the LR process that refers to a is LAMN. Relative to the
test LRn(a; Iq) that is efficient in the presence of a unit root, our test entirely avoids the size
distortions that this test is prone to, while giving up very little power, as is evident in panels
(d)–(f). ST n(a) also exhibits perfect size control, but the power sacrificed for the sake of greater
robustness – with respect to other departures from the VAR with unit roots – is clearly evidenced
by its flatter power curves.

4.2 Application to the expectations theory of the term structure

In Section 2.4.2 above, we discussed the expectations theory of the term structure: in particular,
how the predictions made about cointegrating relations in a VAR with exact unit roots, could
be generalised to the quasi-cointegrating relations implied by a VAR with some roots near unity.
To evaluate these predictions empirically, we estimated a bivariate VAR (with an intercept only)
using quarterly data on 1- and 10-year US Treasury bond yields 1953:Q2–2011:Q3, as plotted
in Figure 3(a). The Akaike, Bayesian, and Hannan-Quinn information criteria agreed on a lag
length of 8, and the dominant characteristic root is estimated to be 0.983. Tests for cointegrating
rank (using the trace test of Johansen, 1995) comfortably reject the null of a cointegrating rank
of zero but do not reject a cointegrating rank of one, at conventional significance levels, which
we take as evidence in favour of the presence of one root in the vicinity of unity.

Consistent with the discussion in Section 2.3, when specifying a parameter space L = [ρ, 1]

for the dominant root, we take h = 8× 4 = 32 quarters to be consistent with a lower estimate of
the average duration of the US business cycle, which yields ρ = 2−1/h = 0.979. The upper panel
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(a) Size: λLU = 0.96. (d) Power: λLU = 0.96 and ωSL = 0.3.
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(b) Size: λLU = 0.98. (e) Power: λLU = 0.98 and ωSL = −0.1.
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Figure 2: Rejection probabilities under the simulation design of Section 4.1, for
NPn(a) (solid line), ST n(a) (dashed line) and LRn(a; 1) (dotted line)
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of Figure 3(b) plots the value of the maximised likelihood conditional on a range of values for
the dominant root, λLU, over this interval. The lower panel plots values of the coefficient on the
1-year bond in the normalised quasi-cointegrating vector β with the coefficient on the 10-year
bond being normalised to unity. The dashed line reports the model-implied value a10(λLU) of
this parameter (see (2.19) above). For each value of the root in the upper panel, the green error
bars in the lower panel give the corresponding 95 per cent conditional confidence intervals Ca|λLU

(see (3.22) above), which are based on the efficient test when the imposed value of λLU is correct;
their midpoints are given by the dotted line. Both dashed and dotted lines lie remarkably close to
each other, suggesting that the data accord well with the predictions of the expectations theory,
irrespective of the actual value of λLU. Finally, using the nearly optimal test NPn gives a 95 per
cent confidence interval of [0.87, 1.07], as compared with that of [0.92, 1.13] when an exact unit
root is imposed.

5 Conclusion

This paper was motivated by Elliott’s (1998) finding that inference on cointegrating relationships
are highly sensitive to departures from the assumption of exact unit roots. We have argued
that this problem is as much one of (non-)identification as it is of inference, because of the
manner in which the conventional definitions of cointegration break down in the absence of exact
unit roots. We have therefore developed an alternative characterisation of cointegration in an
SVAR, in which the long-run equilibrium relationships between the series are identified by those
directions for which the impulse responses decay (relatively) most rapidly. With q roots at unity,
this exactly recovers the r-dimensional cointegrating space – and when these roots merely near
unity, there remains a well-defined q-dimensional quasi-cointegrating space. While this is not the
only possible way of extending ‘cointegration’ to a wider domain, a conceptual advantage of the
approach taken here is that it maintains the duality that exists, in an SVAR with exact unit roots,
between the identification of the long-run equilibrium relationships between the series, and of
the subvector of structural shocks whose common persistent effects underpin those relationships.

Likelihood-based inference on the (quasi-)cointegrating relationships is affected by nuisance
parameters corresponding to the proximity of the dominant q roots to unity. We have shown
that this problem is not merely reminiscent of inference in a predictive regression, but in fact
asymptotically equivalent in the sense of sharing a common limiting experiment. Our problem
also falls within the class of problems studied by Elliott et al. (2015), and we have found that,
in practice, tests with excellent size and power properties can be developed by adapting their
approach to the present setting.
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Appendices
Notation. For x ∈ Rp and A ∈ Rp×p, ∥x∥ denotes the Euclidean norm and ∥A∥ := sup∥x∥=1∥Ax∥
the induced matrix norm.

A Representation theory

This section provides results that support some of the assertions made in the course of Sections 2
and 3, and which are auxiliary to results proved in the following appendices. Some are well known,
but are collected here for ease of reference. Proofs follow at the end of this appendix. DGP is
maintained throughout.

For VAR coefficients Φ := (Φ1, . . . ,Φk) ∈ Rp×kp, let

F := F (Φ) :=



Φ1 Φ2 · · · Φk−1 Φk

I 0 · · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0


(A.1)

denote the associated companion form matrix. For a collection of m×n matrices Z1, . . . , Zk, let

col{Zi}ki=1 :=


Z1

...
Zk

 ,
so that taking xt := col{xt−i}k−1

i=0 , we may write (2.1) as

xt = Fxt−1 +

[
εt

0(k−1)p×1

]
=: Fxt−1 + εt (A.2)

Let λi(Φ) denote the ith root of the characteristic polynomial associated to Φ, when these are
placed in descending order of modulus.

Lemma A.1. Suppose that |λq(Φ)| > |λq+1(Φ)| for some q ∈ {1, . . . , p}. Then there exist there
matrices R ∈ Rp×kp, Λ ∈ Rkp×kp and L ∈ Rp×kp such that:

(i) Λ = diag{ΛLU,ΛST}, where the eigenvalues of ΛLU ∈ Rq×q and ΛST are {λi(Φ)}qi=1 and
{λi(Φ)}kpi=q+1 respectively;

(ii) the following hold:

RΛk −
k∑

i=1

ΦiRΛ
k−i = 0 ΛkLT −

k∑
i=1

Λk−iLTΦi = 0. (A.3)

(iii) R := col{RΛk−i}ki=1 is invertible, and L equals the first p rows of L := (R−1)T;
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(iv) F (Φ) = RΛLT; and

(v) in the model (2.1), IRFε
s := ∂yt+s/∂εt = RΛk−1+sLT for s ≥ 1.

Further, the matrices R∗ ∈ Rp×kp, Λ∗ ∈ Rkp×kp and L∗ ∈ Rp×kp satisfy conditions (i)–(v) if and
only if there exists an invertible kp × kp matrix Q = diag{QLU, QST}, where QLU ∈ Rq×q, such
that R∗ = RQ, Λ∗ = Q−1ΛQ and L∗ = L(QT)−1.

For a given Φ, and its associated companion form F = F (Φ), we shall routinely partition
the matrices appearing in Lemma A.1 as

R := [RLU, RST] R := [RLU,RST] L := [LLU, LST] L := [LLU,LST] (A.4)

where each of RLU, RLU, LLU and LLU have q columns, i.e. the partitioning is conformable with
that of Λ = diag{ΛLU,ΛST}. This partitioning, in conjunction with parts (ii) and (v) of the
preceding lemma, yields (2.6) and (2.7) above. Moreover, we may write part (iv) as

F = RΛLT = RLUΛLUL
T
LU +RSTΛSTL

T
ST (A.5)

which decomposes F with respect to the invariant subspaces associated to the eigenvalues of ΛLU

and ΛST.

Lemma A.2. Suppose that |λq(Φ)| > |λq+1(Φ)| for some q ∈ {1, . . . , p}, the eigenvalues of
Λ0 ∈ Rq×q are all greater than |λq+1(Φ)| in modulus, and R0 ∈ Rp×q is a full column rank
matrix such that

R0Λ
k
0 −

k∑
i=1

ΦiR0Λ
k−i
0 = 0. (A.6)

Then there exist matrices R = [RLU, RST], Λ = diag{ΛLU,ΛST} and L satisfying the conditions
of Lemma A.1, with RLU = R0 and ΛLU = Λ0.

For the next result, recall the definition of Sr given in the context of (2.3) above. By showing
that Sr = (spRLU)

⊥, we substantiate the claim made in the Section 2.2 that Sr is invariant to
the identification of the structural shocks wt. Sr may thus be equivalently defined with IRFε

s

taking the place of IRFw
s in (2.3).

Lemma A.3.

(i) If QC holds for some ρ ∈ (0, 1], then Sr = (spRLU)
⊥.

(ii) If CV holds, then CS = Sr = (spRLU)
⊥, and QC holds with ρ = 1.

Lemma A.4. Suppose QC holds. Let Λ = diag{ΛLU,ΛST}, R = [RLU, RST] and L = [LLU,LST]

be as in Lemma A.1 and (A.4). Then (2.9)–(2.10) hold with ΦLU = RLUΛ
k
LU, ΦST = RSTΛ

k
ST,

zLU,t := LT
LUxt and zST,t := LT

STxt.

One aspect of the cointegrated VAR with exact unit roots, which does not readily translate to
the quasi-cointegrated VAR, is the ‘error correction’ representation of the adjustments towards
equilibrium. The only situation in which an analogue of that representation is available is when
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the q largest roots are identical, so that ΛLU = λ0Iq for some λ0 ∈ Lρ
LU, as arises automatically

if q = 1. (Note that λ0 must be real in this case.) In that case, letting ∆λxt := xt − λxt−1, we
have the following.

Lemma A.5. Suppose QC holds with ΛLU = λ0Iq. Then {xt} satisfies

∆λ0xt = Πxt−1 +

k−1∑
i=1

Ψi∆λ0xt−i + εt, (A.7)

where Π := −λ−k+1
0 Φ(λ0) = αβT, for some α ∈ Rp×r having full column rank. Moreover,

(∆λ0xt, β
Txt) follow a VAR(k − 1), all of whose characteristic roots lie in Lρ

ST.

Proof of Lemma A.1. Let J denote a (kp × kp) real Jordan matrix similar to F , each of whose
diagonal blocks correspond to roots of Φ(·), so that P−1FP = J for some P ∈ Rkp×kp. We may
take the diagonal blocks of J to be ordered such that J = diag{JLU, JST}, where JLU ∈ Rq×q has
all its eigenvalues in Lρ

LU. Letting

X := [0p · · · 0p Ip]P

we have by Gohberg, Lancaster, and Rodman (1982, Thm. 1.24 and 1.25) that the matrices
(X, J) form a standard pair for Φ(·).9 Therefore,

XJk −
k∑

i=1

ΦiXJ
k−i = 0,

and col{XJk−i}ki=1 = P is invertible, so that the matrix

Y := [Ip · · · 0p 0p](P
T)−1 (A.8)

is well defined. By Gohberg et al. (1982, Prop. 2.1), (Y, J) satisfy

JkY T −
k∑

i=1

Jk−iY TΦi = 0.

Parts (i)–(iv) of the lemma are thus satisfied with (R,Λ, LT,R,LT) = (X,J, Y T, P, P−1). It
further follows by recursive substitution that

IRFs = [F s]11 = [RΛsLT]11 = RΛk−1+sLT

where [A]11 denotes the upper left p× p block of the matrix A; thus part (v) is proved.
Finally, let Q = diag{QLU, QST} be as in the final part of the lemma. It is easily verified that

Λ∗ := diag{Q−1
LUΛLUQLU, Q

−1
ST ΛSTQST} = Q−1ΛQ,

R∗ := RQ and L∗ := L(QT)−1 have the required properties. Conversely, if both (R,Λ, L) and
9Note that the ‘first companion form’ matrix defined by these authors (C1 on p. 13 of that work) equals F

with the ordering of its rows and columns reversed, so our definitions of X (and below, Y ) differ from theirs.
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(R∗,Λ∗, L∗) satisfy conditions (i)–(v), then both Λ and Λ∗ are block diagonal matrices similar to
J = diag{JLU, JST}, whence there exists Q = diag{QLU, QST} such that Λ∗ = Q−1ΛQ, etc.

Proof of Lemma A.2. R0 := col{R0Λ
k−i
0 }ki=1 ∈ Rkp×q has rank q, and (A.6) implies that FR0 =

R0Λ0, for F := F (Φ). Since the remaining kp − q eigenvalues of F are distinct from the
eigenvalues of Λ0, R0 is a simple invariant subspace of F (Stewart and Sun, 1990, Defn V.1.2).
Hence there exist R,Λ,L ∈ Rkp×kp such that F = RΛLT and LTR = Ikp, and R and Λ can
be partitioned as R = [R0,RST] and Λ = diag{Λ0,ΛST} (Stewart and Sun, 1990, Thm V.1.5).
Since Λ0 and ΛST must be similar to the blocks JLU and JST of the real Jordan form of F , as
introduced in the proof of Lemma A.1, the result then follows by the same arguments as were
given in that proof.

Proof of Lemma A.3. (i). By Lemma A.1(v), for any b ∈ Rp,

bTIRFw
s = bTIRFε

sΥ = bTRΛk−1+sLTΥ = bTRLUΛ
k−1+s
LU LT

LUΥ+ bTRSTΛ
k−1+s
ST LT

STΥ. (A.9)

Since the spectral radius of ΛST is strictly less than ρ, we have by Horn and Johnson (2013,
Cor. 5.6.13) that

Λt
ST/ρ

t → 0 (A.10)

as t→ ∞. Since ΛLU is diagonalisable under QC2, by Lemma A.1 we may choose (RLU,ΛLU, LLU)

such that ΛLU is a real Jordan block diagonal matrix (as in Corollary 3.4.1.10 of Horn and
Johnson, 2013). The eigenvalues of ΛT

LUΛLU = ΛLUΛ
T
LU are therefore of the form |λ|2, for λ an

eigenvalue of ΛLU, and thus λmin(Λ
T
LUΛLU) ≥ ρ2, where λmin(M) denotes the smallest eigenvalue

of a positive-definite matrix M . Therefore letting x := RT
LUb,

∥xTΛt
LUL

T
LUΥ∥2 ≥ λmin(L

T
LUΥ

TΥLLU)∥xTΛt
LU∥2

≥ ρλmin(L
T
LUΥ

TΥLLU)∥Λt−1
LU x∥2 ≥ · · · ≥ ρ2tλmin(L

T
LUΥ

TΥLLU)∥x∥2.

λmin(L
T
LUΥ

TΥLLU) > 0, since Υ is nonsingular, and LLU has full column rank under QC2. Deduce
that if bTRLU ̸= 0, then

lim inf
t→∞

∥bTRLUΛ
t
LUL

T
LUΥ∥/ρt > 0. (A.11)

It follows from (A.9)–(A.11) that bTIRFw
s /ρ

s → 0 as s → ∞ if and only if b ⊥ spRLU. Thus
(spRLU)

⊥ gives the unique r-dimensional subspace of Rp satisfying the definition of Sr.
(ii). Since rkΦ(1) = p− q under CV2, there exists RLU ∈ Rp×q having rank q such that

0 = Φ(1)RLU = RLU −
k∑

i=1

ΦiRLU =(1) RLUΛ
k
LU −

k∑
i=1

ΦiRLUΛ
k−i
LU (A.12)

where =(1) follows by taking ΛLU = Iq. By a similar argument, here exists a LLU ∈ Rp×q with
rkLLU = q and LT

LUΦ(1) = 0. CV is thus a special case of QC with ρ = 1. Sr = (spRLU)
⊥ therefore

follows immediately from part (i) of the lemma. Finally, recall from the second characterisation
of the cointegrating space given in Section 2.2 that CS = {kerΦ(1)}⊥. By (A.12) this also
coincides with (spRLU)

⊥.
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Proof of Lemma A.4. By (A.2) and Lemma A.1,

LTxt = LTFxt−1 + LTεt = ΛLTxt−1 + LTεt.

Since Λ = diag{ΛLU,ΛST}, it is clear that (2.10) holds for zLU,t and zST,t as defined in the lemma.
Further, taking the first p rows of (A.2) and using Lemma A.1 again yields

xt = RΛkLTxt−1 + εt = RLUΛ
k
LUL

T
LUxt−1 +RSTΛ

k
STL

T
STxt−1 + εt.

Proof of Lemma A.5. The representation (A.7) follows directly from Theorem 1 in Johansen and
Schaumburg (1999). By the same arguments as given in the proof of Corollary 4.3 in Johansen
(1995), since Φ has q roots at λ0, Φ(λ0) must have rank at least equal to r = p− q; that it has
rank equal to r then follows from QC2, which implies that Φ(λ0)RLU = 0. For the final claim, we
note that under the maintained assumption that ΛLU = λ0Iq, we have from (A.5) that

∆λ0xt = xt − λ0xt−1 = (F − λ0Ikp)xt−1 + εt = RST(ΛST − λ0Ikp−q)L
T
STxt + εt. (A.13)

By Lemma A.1, LST ∈ Rkp×(kp−q) is a full column rank matrix such that LT
STRLU = 0, where

RLU = col{RLUΛ
k−i
LU }ki=1 = col{λk−i

0 RLU}ki=1. By considering the column span of RLU, it follows
that LST must have the same column span as

β Ip

−λ0Ip
. . .
. . . Ip

−λ0Ip

 .

Hence there exists a full-rank Ψ ∈ R(kp−q)×(kp−q) such that

LT
STxt = Ψ


βTxt

∆λ0xt
...

∆λ0xt−k+2

 . (A.14)

We recall from Lemma A.4 that the l.h.s. is equal to zST,t, which by that result has a first-order
autoregressive representation with characteristic roots that are the eigenvalues of ΛST, and hence
in Lρ

ST. Indeed, (2.10a) provides the companion form representation for autoregressive process
followed by (∆λ0xt, β

Txt), which accordingly has the properties claimed.

Proof of Proposition 2.1. This is an immediate corollary of Lemma A.3.
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B Perturbation theory

Recall the definition of P ⊂ Rp×kp given in Section 3.1.2. The normalisation (3.3) entails that[
A

Iq

]
Λk

LU −
k∑

i=1

Φi

[
A

Iq

]
Λk−i

LU = 0 (B.1)

which by Lemmas A.1 and A.2 uniquely determines RLU = [ AIq ] and ΛLU as a function of Φ ∈ P.
As in Section 3.1.2, we shall denote the implied mappings by RLU(Φ), A(Φ), ΛLU(Φ), and
RLU(Φ) := col{RLU(Φ)Λk−i

LU (Φ)}ki=1. Our first result is that these are smooth (i.e. infinitely
differentiable); its proof and those of the subsequent lemmas appear at the end of this appendix.

Lemma B.1. P is open; and A(Φ) and ΛLU(Φ) are smooth on P.

Our next result gives the first derivatives of the maps A(Φ) and ΛLU(Φ); it is closely related
to Theorem 2.1 in Sun (1991). To express these derivatives more concisely, let

B(Φ) := (Iq ⊗RST)[(Λ
T
LU ⊗ Ikp−q)− (Iq ⊗ ΛST)]

−1(Iq ⊗ LT
ST), (B.2)

where we have suppressed the dependence of each of the r.h.s. quantities on Φ. The matrix in
square brackets on the r.h.s. has eigenvalues of the form λ− µ, where λ and µ are eigenvalues of
ΛLU and ΛST respectively; it is thus invertible for all Φ ∈ P. Under the normalisation implied
by (B.1), B is uniquely determined by Φ ∈ P, even though RST, ΛST and LST individually are
not (as follows from the final part of Lemma A.1).

Lemma B.2. Let Φ0 ∈ P, A0 := A(Φ0), Λ0,LU := ΛLU(Φ0), R0,LU := [A0
Iq ] and R0,LU :=

col{R0,LUΛ
k−i
0,LU}ki=1. Then

(i) A0 = A(Φ) and Λ0,LU = ΛLU(Φ) for all Φ ∈ P such that (Φ − Φ0)R0,LU = 0 and
|λq+1(Φ)| < |λq(Φ0)|;

(ii) the first differentials of A(·) and ΛLU(·) at Φ = Φ0 satisfy10

[
vec(dA)

vec(dΛLU)

]
=

[
JA(Φ0)

JΛ(Φ0)

]
vec{(dΦ)R0,LU}

where

J(Φ) :=

[
JA(Φ)

JΛ(Φ)

]
:=

[
(Iq ⊗ βT)B

[(ΛT
LU ⊗ Iq)− (Iq ⊗ ΛLU)](Iq ⊗GT)B + (Iq ⊗ LT

LU)

]
(B.3)

for GT := [0q×r, Iq], βT = [Ir,−A], and ΛLU = ΛLU(Φ), etc.; and

(iii) J(Φ) is continuous.

When ΛLU(Φ) = Iq, the pq × pq matrix J(Φ) simplifies as follows.
10For a more compact notation, here and subsequently we express matrix derivatives in terms of differentials,

in the manner of Magnus and Neudecker (2007).
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Lemma B.3. Suppose Φ ∈ P with ΛLU(Φ) = Iq. Then J(Φ) is nonsingular, and[
JA(Φ)

JΛ(Φ)

]
=

[
Iq ⊗ βTRST(Ikp−q − ΛST)

−1LT
ST

Iq ⊗ LT
LU

]
.

Proof of Lemma B.1. We first prove P is open. For F ∈ Rkp×kp, let λi(F ) denote the ith
eigenvalue of F , when these are placed in descending order of modulus. Let F denote the set of
kp× kp matrices such that

(i) |λq+1(F )| < |λq(F )|; and

there exist ΛLU ∈ Rq×q and RLU ∈ Rkp×q such that

(ii) the eigenvalues of ΛLU are {λi(F )}qi=1, FRLU = RLUΛLU; and

(iii) rk{GTRLU} = q, where GT := [0q×(kp−q), Iq] = [0q×k(p−1), G
T].

In view of Lemma A.1, Φ ∈ P if and only if the companion form matrix F (Φ) is in F . Since
F (·) is trivially continuous, it suffices to show that F is open.

To that end, fix F0 ∈ F , and let R0,LU and Λ0,LU denote matrices satisfying (ii) and (iii) above.
By the continuity of eigenvalues and simple invariant subspaces (Theorems IV.1.1 and V.2.8 in
Stewart and Sun, 1990), for every ϵ > 0 there exists a δ > 0 such that whenever ∥F − F0∥ < δ,
F satisfies requirements (i) and (ii) above, with associated RLU such that ∥RLU − R0,LU∥ < ϵ.
Since the set of full rank matrices is open, we may take ϵ > 0 sufficiently small such that (iii)
also holds. Thus F ∈ F , and so F0 is an interior point of F ; deduce F is open.

We turn next to the smoothness of A(Φ) and ΛLU(Φ). For F0 ∈ F we have the invariant
subspace decomposition (as per (A.5) above)

F0 = R0,LUΛ0,LUL
T
0,LU +R0,STΛ0,STL

T
0,ST (B.4)

where R0,LU and Λ0,LU satisfy (ii)–(iii) above. Since (iii) holds, we may choose R0,LU such that
GTR0,LU = Iq; note that LT

0R0 = Ikp (as per Lemma A.1(iii)) implies LT
0,LUR0,LU = Iq. Define

the maps

H(RLU,ΛLU;F ) :=
[
RLUΛLU − FRLU; GTRLU − Iq

]
(B.5a)

H∗(RLU,ΛLU;F ) :=
[
RLUΛLU − FRLU; LT

0,LURLU − Iq

]
, (B.5b)

so that H(R0,LU,Λ0,LU;F0) = H∗(R0,LU,Λ0,LU;F0) = 0; but note that these maps need not
otherwise agree, since they impose distinct normalisations on RLU. Once we have shown that
the Jacobian of H∗ with respect to (RLU,ΛLU) is nonsingular at (R0,LU,Λ0,LU;F0), it will follow
by the implicit mapping theorem (Lang, 1993, Thm. XIV.2.1) that there exists a neighbourhood
N ⊂ F of F0 and smooth functions R∗

LU : N → Rkp×q, Λ∗
LU : N → Rq×q such that

H∗[R∗
LU(F ),Λ

∗
LU(F );F ] = 0

for all F ∈ N ; by the continuity of R∗
LU(·), we may choose N such that rk{GTR∗

LU(F )} = q for
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all F ∈ N . Thus

RLU(F ) := R∗
LU(F )[G

TR∗
LU(F )]

−1 (B.6)

ΛLU(F ) := [GTR∗
LU(F )]Λ

∗
LU(F )[G

TR∗
LU(F )]

−1 (B.7)

are well defined for all F ∈ N , and have the property that

H[RLU(F ),ΛLU(F );F ] = 0

for all F ∈ N . Since the (RLU,ΛLU) satisfying H(RLU,ΛLU;F ) = 0 is unique, repeating this
construction for every F0 ∈ F allows the smooth maps RLU(F ) and ΛLU(F ) to be extended to
the whole of F . The smoothness of ΛLU(Φ) := ΛLU[F (Φ)] and RLU(Φ) := RLU[F (Φ)] follows
immediately, and that of A(Φ) by noting that it corresponds to rows (k− 1)p+1 to (k− 1)p+ r

of RLU(Φ).
It thus remains to verify that the Jacobian of H∗ with respect to (RLU,ΛLU) is nonsingular

at (R0,LU,Λ0,LU;F0). Matrix differentiation gives

dH∗ =
[
R0,LU(dΛLU) + (dRLU)Λ0,LU − F0(dRLU); LT

0,LU(dRLU)
]
=:
[
dH∗

1 ; dH∗
2

]
The Jacobian is nonsingular if dH∗ = 0 implies dRLU = 0 and dΛLU = 0. To that end, suppose
dH∗ = 0. Then 0 = dH∗

2 = LT
0,LU(dRLU), and

dRLU = (R0L
T
0 )dRLU = (R0,LUL

T
0,LU +R0,STL

T
0,ST)dRLU = (R0,STL

T
0,ST)dRLU

and similarly, by (B.4) above,

F0(dRLU) = (R0,LUΛ0,LUL
T
0,LU +R0,STΛ0,STL

T
0,ST)dRLU = R0,STΛ0,STL

T
0,ST(dRLU).

Hence

dH∗
1 = R0,LU(dΛLU) +R0,ST[L

T
0,ST(dRLU)Λ0,LU − Λ0,STL

T
0,ST(dRLU)]

=
[
R0,LU R0,ST

] [ dΛLU

T [LT
0,ST(dRLU)]

]
,

where T (M) :=MΛ0,LU −Λ0,STM. Since R0 is nonsingular, dH∗
1 = 0 implies that dΛLU = 0 and

T [LT
0,ST(dRLU)] = 0; but since Λ0,LU and Λ0,ST have no common eigenvalues, T (M) = 0 if and

only if M = 0 (Stewart and Sun, 1990, Thm V.1.3). Thus LT
0,ST(dRLU) = 0, whence[

LT
0,LU

LT
0,ST

]
dRLU = 0

from which it follows that dRLU = 0, since L0 is nonsingular.
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Proof of Lemma B.2. (i). We have

R0,LUΛ
k
0,LU −

k∑
i=1

ΦiR0,LUΛ
k−i
0,LU = ΦR0,LU =(1) Φ0R0,LU = R0,LUΛ

k
0,LU −

k∑
i=1

Φ0,iR0,LUΛ
k−i
0,LU =(2) 0

where =(1) is by hypothesis, and =(2) by Lemma A.1. Since |λq+1(Φ)| < |λq(Φ0)| = |λq(Λ0,LU)|
and Φ ∈ P, the result then follows by Lemma A.2.

(ii). Analogously to (B.5) above, define

H(RLU,ΛLU;Φ) :=
[
RLUΛLU − F (Φ)RLU; GTRLU − Iq

]
H∗(RLU,ΛLU;Φ) :=

[
RLUΛLU − F (Φ)RLU; LT

0,LURLU − Iq

]
.

By the argument given in the proof of Lemma B.1, there are smooth maps RLU(Φ), R∗
LU(Φ),

ΛLU(Φ) and Λ∗
LU(Φ) such that H[RLU(Φ),ΛLU(Φ);Φ] = 0 and H∗[R∗

LU(Φ),Λ∗
LU(Φ);Φ] = 0 for

all Φ ∈ P. Since GTR0,LU = Iq implies that GTR0,LU = Iq, we have RLU(Φ) = R∗
LU(Φ) = R0,LU

and ΛLU(Φ) = Λ∗
LU(Φ) = Λ0,LU when Φ = Φ0, but otherwise these maps need not agree. Since

the maps R∗
LU(Φ) and Λ∗

LU(Φ) are easier to work with, we first obtain the derivatives of these,
and subsequently those of A(Φ) and ΛLU(Φ) via renormalisation, analogously to (B.6)–(B.7).

Setting the total differential of H∗ to zero gives

0 = dH∗ =
[
R0,LU(dΛ

∗
LU) + (dR∗

LU)Λ0,LU − F0(dR
∗
LU)− F (dΦ)R0,LU; LT

0,LU(dR
∗
LU)
]

(B.8)

where F0 := F (Φ), whence by similar arguments as were given in the proof of Lemma B.1,

F (dΦ)R0,LU = R0,LU(dΛ
∗
LU) +R0,STL

T
0,ST(dR

∗
LU)Λ0,LU −R0,STΛ0,STL

T
0,ST(dR

∗
LU). (B.9)

Vectorising gives

vec[F (dΦ)R0,LU] = (Iq ⊗R0,LU) vec(dΛ
∗
LU) +M vec(dR∗

LU) (B.10)

for M := (Iq ⊗ R0,ST)[(Λ
T
0,LU ⊗ Ikp−q) − (Iq ⊗ Λ0,ST)](Iq ⊗ LT

0,ST). Since LT
0,STR0,LU = 0 and

LT
0,STR0,ST = Ikp−q, setting

M † := (Iq ⊗R0,ST)[(Λ
T
0,LU ⊗ Ikp−q)− (Iq ⊗ Λ0,ST)]

−1(Iq ⊗ LT
0,ST)

we have M †(Iq ⊗R0,LU) = 0 and M †M = Iq ⊗R0,STL
T
0,ST. Since LT

0,LU(dR
∗
LU) = 0 by (B.8), it

follows that
dR∗

LU = (R0,LUL
T
0,LU +R0,STL

T
0,ST)dR

∗
LU = (R0,STL

T
0,ST)dR

∗
LU

whence M †M vec(dR∗
LU) = vec(dR∗

LU), and so premultiplying (B.10) by M † gives

vec(dR∗
LU) =M † vec[F (dΦ)R∗

0,LU].

By the structure of the companion form matrix, LT
0,STF (dΦ)R0,LU = LT

0,ST(dΦ)R0,LU. Since R
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is given by the final p rows of R, we have

vec(dR∗
LU) = (Iq ⊗R0,ST)[(Λ

T
0,LU ⊗ Ikp−q)− (Iq ⊗ Λ0,ST)]

−1(Iq ⊗ LT
0,ST) vec{(dΦ)R0,LU}

= B(Φ0) vec{(dΦ)R0,LU}. (B.11)

To compute the Jacobian of A(Φ), note that by partitioning the p× p identity matrix as

[
G⊥ G

]
:=

[
Ir 0

0 Iq

]

we have A(Φ) = GT
⊥RLU(Φ) = GT

⊥R
∗
LU(Φ)[GTR∗

LU(Φ)]−1. From R∗
LU(Φ0) = R0,LU, GTR0,LU =

GTR0,LU = Iq and GT
⊥R0,LU = A0, it follows that at Φ = Φ0

dA = GT
⊥(dR

∗
LU)− (GT

⊥R0,LU)G
T(dR∗

LU) = (GT
⊥ −A0G

T)dR∗
LU = βT0 dR

∗
LU (B.12)

for βT0 = [Ir,−A0]. The first part of (B.3) follows immediately from (B.11) and (B.12). For the
Jacobian of ΛLU(Φ), note that (as per (B.7) above)

ΛLU(Φ) = [GTR∗
LU(Φ)]Λ∗

LU(Φ)[GTR∗
LU(Φ)]−1

whence at Φ = Φ0,

dΛLU = GT(dR∗
LU)Λ0,LU + dΛ∗

LU − Λ0,LUG
T(dR∗

LU).

Recognising that GT(dR∗
LU) = GT(dR∗

LU) and vectorising, we have

vec(dΛLU) = {(ΛT
0,LU ⊗ Iq)− (Iq ⊗ Λ0,LU)}(Iq ⊗GT) vec(dR∗

LU) + vec(dΛ∗
LU). (B.13)

dR∗
LU is given in (B.11) above. To obtain dΛ∗

LU, note that premultiplying (B.9) by LT
0,LU yields

dΛ∗
LU = LT

0,LUF (dΦ)R0,LU = LT
0,LU(dΦ)R0,LU. (B.14)

Thus (B.11), (B.13) and (B.14) give the second part of (B.3).
(iii). Continuity of J(Φ) is immediate from A(Φ) and ΛLU(Φ) being smooth.

Proof of Lemma B.3. The stated expression for J(Φ) is immediate from (B.2), Lemma B.2, and
ΛLU(Φ) = Iq. That J(Φ) is nonsingular will follow once we have shown that the (p× p) matrix

K :=

[
βTRST(Ikp−q − ΛST)

−1LT
ST

LT
LU

]
(B.15)

is nonsingular. We first note the following facts. Since Φ ∈ P with ΛLU(Φ) = Iq, it follows from
(B.1) that rkΦ(1) ≤ p− q. Since Φ(·) has exactly q roots at unity, the reverse inequality holds
by Corollary 4.3 of Johansen (1995), whence rkΦ(1) = p − q. Thus CV holds: this implies that
spβ = spΦ(1)T and rkLLU = q (see Lemma A.3 and the characterisation of the CS discussed in
Section 2.2).
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Now let c ∈ Rp be such that Kc = 0, so that in particular LT
LUc = 0. Since rkΦ(1)+rkLLU =

p, while (2.6) with ΛLU = Iq implies LT
LUΦ(1) = 0, it follows that c ∈ spΦ(1), i.e. c = Φ(1)b for

some b ∈ Rp. By Gohberg et al. (1982, Thm 2.4), Φ(µ)−1 = R(µI−Λ)−1LT for any µ not a root
of Φ(·). Since the columns of the quasi-cointegrating matrix β are orthogonal to RLU, we have

βT = βTRST(µIkp−q − ΛST)
−1LT

STΦ(µ) → βTRST(Ikp−q − ΛST)
−1LT

STΦ(1) (B.16)

by the continuity of the r.h.s., as µ→ 1, since ΛST has no eigenvalues at unity. Hence

0 = Kc =

[
βTRST(Ikp−q − ΛST)

−1LT
STΦ(1)b

0

]
=

[
βTb

0

]

implying βTb = 0. But spβ = spΦ(1)T, so we must have Φ(1)b = 0. Thus c = 0, from which it
follows that K is nonsingular.

C Asymptotics

The assumptions DGP and LOC are maintained throughout this appendix. We first recall some
notation. Let Φ0 := limn→∞Φn, where {Φn} is the sequence specified by LOC. Let Rn :=

[RLU(Φn), RST] and Λn := diag{Λn,LU,ΛST} be as in LOC. Take Rn := col{RnΛ
k−i
n }ki=1 and Ln :=

(RT
n)

−1 as in Lemma A.1, and partition these as Rn = [Rn,LU,Rn,ST] and Ln = [Ln,LU,Ln,ST]

(as per (A.4)); note that both these matrices are convergent.
Let zLU,t := LT

n,LUxt and zST,t = LT
n,STxt be as in Lemma A.4 (for Φ = Φn); these follow

the autoregressions given in (2.10). Recall E ∼ BM(Σ) and ZC(r) :=
∫ r
0 eC(r−s)LT

LUdE(s) from
(3.6). For i ∈ {LU, ST}, let z̄i,t denote the residual from an OLS regression of {z̄LU,t−1}nt=1 onto
a constant and linear trend. Recall that Z̄C denotes the residual from an L2[0, 1] projection of
each sample path of ZC onto a constant and linear trend. As in Section 3.1.1, let Σ̂n denote the
unrestricted MLE for Σ, i.e. the OLS residual variance matrix estimator.

Proofs of the following results appear at the end of this section.

Lemma C.1. The following hold jointly:

(i) n−1/2
∑⌊nr⌋

t=1 εt ⇝ E(r)

(ii) n−1/2zLU,⌊nr⌋ ⇝ ZC(r)

(iii) n−1/2z̄LU,⌊nr⌋ ⇝ Z̄C(r)

as weak convergences on the space of right-continuous functions [0, 1] → Rm (with respect to the
uniform topology); and

(iv) n−1
∑n

t=1(z̄LU,t−1 ⊗ εt)⇝
∫ 1
0 [Z̄C(r)⊗ dE(r)] dr

(v) n−1/2
∑n

t=1(z̄ST,t−1 ⊗ εt)⇝ ξ ∼ N[0,Ω⊗ Σ]

(vi) Σ̂n
p→ Σ,

where Ω := limn→∞ var(zST,n) is positive definite, and ξ is independent of E.
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Now define the reparametrisation Φ 7→ φ by

φ :=

[
φLU

φST

]
=

[
vec{(Φ−Φn)Rn,LU}
vec{(Φ−Φn)Rn,ST}

]
= vec{(Φ−Φn)Rn}, (C.1)

which is reversed by setting Φ = Φn+vec−1(φ)LT
n , where vec−1(x) maps x ∈ Rkp2 to the matrix

X ∈ Rp×kp for which vec(X) = x. The parameter space for φ is the open set

Pn := {vec[(Φ−Φn)Rn] | Φ ∈ P}, (C.2)

and the true parameters correspond to φ = 0. Although Pn depends on n, since Φn → Φ0 ∈ P

and P is open (Lemma B.1), there is an ϵ > 0 such that Pn contains a ball of radius ϵ centred
at the origin, for all n sufficiently large. Let

ℓ∗n(φ) := ℓn[Φn + vec−1(φ)LT
n , Σ̂n].

Define Dn := diag{nI#LU, n
1/2I#ST}, where #LU := pq and #ST := p(kp − q) correspond to the

dimensions of the vectors φLU and φST respectively.

Lemma C.2. There exist Sn and Hn such that for all φ ∈ Pn,

ℓ∗n(φ)− ℓ∗(0) = ST
n (Dnφ)− 1

2(Dnφ)
THn(Dnφ)

where

Sn ⇝

[∫ 1
0 [Z̄C(r)⊗ Σ−1dE(r)]

ξ

]
=:

[
SLU

SST

]
=: S

Hn ⇝

[∫
Z̄CZ̄

T
C 0

0 Ω

]
⊗ Σ−1 =:

[
HLU 0

0 HST

]
=: H,

for ξ as in Lemma C.1.

Define the constraint maps

θn(φ) := vec{ΛLU[Φn + vec−1(φ)LT
n ]− (Iq + C/n)} (C.3)

γn(φ) := aij [Φn + vec−1(φ)LT
n ]− aij(Φn),

and the associated restricted parameter spaces

Pn|θ := {φ ∈ Pn | θn(φ) = 0}

Pn|θ,γ := {φ ∈ Pn | θn(φ) = 0 and γn(φ) = 0}.

Let φ̂n, φ̂n|θ and φ̂n|θ,γ denote exact maximisers of ℓ∗n(φ) over the sets Pn, Pn|θ and Pn|θ,γ re-
spectively: which may be shown to exist at least with with probability approaching one (w.p.a.1),
and may be arbitrarily defined otherwise.

Lemma C.3. Each of Dnφ̂n, Dnφ̂n|θ and Dnφ̂n|θ,γ are Op(1).
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Let ∇φg(φ0) denote the gradient of g : P → Rdg at φ = φ0. The derivatives of the maps θn
and γn can be inferred from Lemma B.2. Part (ii) of that result gives the derivatives with respect
to φLU, and part (i) implies that when φLU = 0, the first (and higher order) derivatives with
respect to φST are identically zero. Now letting ed,i ∈ Rd denote a vector with zero everywhere
except for a 1 in the ith position, define

Π := [Θ; Γ] := [Iq ⊗ LLU; eq,j ⊗ LST(Ikp−q − ΛT
ST)

−1RT
STβer,i],

which by Lemma B.3 has full column rank, and

Θ :=

[
Θ

0#ST×q2

]
Π :=

[
Π

0#ST×(q2+1)

]
.

Lemma C.4.

(i) Let {φ̃n} denote a random sequence in Pn with φ̃n
p→ 0. Then

∇φθn(φ̃n)
p→ Θ ∇φγn(φ̃n)

p→ Γ.

(ii) Let QΘ,⊥ and QΠ,⊥ denote orthogonal projections from Rkp2 onto the subspaces orthogonal
to the the columns of Θ and Π. Then

Dnφ̂n|θ = QΘ,⊥Dnφ̂n|θ + op(1)

Dnφ̂n|θ,γ = QΠ,⊥Dnφ̂n|θ,γ + op(1).

Let Θ⊥ ∈ Rpq×qr and Π⊥ ∈ Rpq×(qr−1) denote matrices having full column rank, such that
ΘT

⊥Θ = 0 and ΠT
⊥Π = 0. We may take Θ⊥ = Iq ⊗ LLU,⊥, for LLU,⊥ a p × r matrix having

rank r and for which LT
LU,⊥LLU = 0. Since Π = [Θ,Γ] there exists a full column rank matrix

Ξ ∈ Rqr×(qr−1) for which Π⊥ := Θ⊥Ξ.

Proposition C.1.

(i) Dnφ̂n =

[
nφ̂n,LU

n1/2φ̂n,ST

]
⇝

[
H−1

LU SLU

H−1
ST SST

]
,

(ii) Dnφ̂n|θ =

[
nφ̂n,LU|θ

n1/2φ̂n,ST|θ

]
⇝

[
Θ⊥(Θ

T
⊥HLUΘ⊥)

−1ΘT
⊥SLU

H−1
ST SST

]
,

(iii) 2[ℓ∗n(φ̂n)− ℓ∗n(φ̂n|θ)]⇝ ST
LUH

−1
LU Θ(ΘTH−1

LU Θ)−1ΘTH−1
LU SLU.

Let HΘ,⊥ := ΘT
⊥HLUΘ⊥, and Q ∈ Rqr×qr denote the orthogonal projection onto spH

1/2
Θ,⊥Ξ. Then

(iv) 2[ℓ∗n(φ̂n|θ)− ℓ∗n(φ̂n|θ,γ)]⇝ (H
−1/2
Θ,⊥ ΘT

⊥SLU)
T[Iqr −Q](H

−1/2
Θ,⊥ ΘT

⊥SLU).

The preceding gives the limiting distribution of Φ̂n under the reparametrisation (C.1); the
limiting distributions of estimators of A and ΛLU will then follow by an application of the delta
method, as per
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Proposition C.2. Let {Φn} be as in LOC, Φ0 := limn→∞Φn ∈ P, and {Φ̃n} a random sequence
in P with Φ̃n = Φn + op(1). Then[

vec{A(Φ̃n)−A(Φn)}
vec{ΛLU(Φ̃n)− ΛLU(Φn)}

]
=

([
JA(Φ0)

JΛ(Φ0)

]
+ op(1)

)
vec{(Φ̃n −Φn)Rn,LU} (C.4)

where Rn,LU := RLU(Φn).

Proof of Lemma C.1. (i)–(iv) follow by Donsker’s theorem for partial sums, Lemma 3.1 in Phil-
lips (1988) and the continuous mapping theorem; (v) by the martingale central limit theorem
(Hall and Heyde, 1980, Thm. 3.2); and (vi) by arguments similar to those given in Section 3.2.2
of Lütkepohl (2007).

Proof of Lemma C.2. Let Φi := ΦRn,i and Φn,i := ΦnRn,i for i ∈ {LU, ST}. Then

ℓn(Φ,Σ) = −n
2
log detΣ−min

m,d

1

2

n∑
t=1

∥yt −m− dt−Φyt−1∥2Σ−1

= −n
2
log detΣ−min

m,d

1

2

n∑
t=1

∥xt −m− dt−Φxt−1∥2Σ−1

= −n
2
log detΣ−min

m,d

1

2

n∑
t=1

∥xt −m− dt− ΦLUzLU,t−1 − ΦSTzST,t−1∥2Σ−1

= −n
2
log detΣ− 1

2

n∑
t=1

∥x̄t − ΦLUz̄LU,t−1 − ΦSTz̄ST,t−1∥2Σ−1

Twice differentiating the r.h.s. (as in Lütkepohl 2007, Sec. 3.4) with respect to ΦLU and ΦST, and
noting that φi = vec(Φi − Φn,i), we thus have

ℓ∗n(φ)− ℓ∗n(0) = ℓn(Φ, Σ̂n)− ℓn(Φn, Σ̂n) = ST
n (Dnφ)− 1

2(Dnφ)
THn(Dnφ)

where

Sn :=

[
n−1

∑n
t=1(z̄LU,t−1 ⊗ Σ̂−1

n ε̄t)

n−1/2
∑n

t=1(z̄ST,t−1 ⊗ Σ̂−1
n ε̄t)

]
=(1)

[
1
n

∑n
t=1(z̄LU,t−1 ⊗ Σ̂−1

n εt)
1

n1/2

∑n
t=1(z̄ST,t−1 ⊗ Σ̂−1

n εt)

]

Hn :=

[
n−2

∑n
t=1 z̄LU,t−1z̄

T
LU,t−1 n−3/2

∑n
t=1 z̄LU,t−1z̄

T
ST,t−1

n−3/2
∑n

t=1 z̄ST,t−1z̄
T
LU,t−1 n−1

∑n
t=1 z̄ST,t−1z̄

T
ST,t−1

]
⊗ Σ̂−1

n ,

and ε̄t denotes the residual from an OLS regression of {εt}nt=1 on a constant and a linear trend;
=(1) holds because each element of z̄LU,t−1 and z̄ST,t−1 is orthogonal to a constant and linear
trend. The stated convergences of Sn and Hn then follow by Lemma C.1 and the continuous
mapping theorem.

Proof of Lemma C.3. By Lemma C.2, we have

ℓ∗n(φ)− ℓ∗n(0) ≤ ∥Dnφ∥[∥Sn∥ − 1
2λmin(Hn)∥Dnφ∥].

Let M <∞ and ϵ > 0. Since Dn = diag{nI#LU, n
1/2I#ST}, Sn = Op(1) and Hn ⇝ H is positive
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definite w.p.a.1, it is evident that

P

{
sup

{φ∈Pn|∥Dnφ∥≥M}
[ℓ∗n(φ)− ℓ∗n(0)] < −ϵ

}
≥ P

{
M [∥Sn∥ − 1

2λmin(Hn)M ] < −ϵ
}

and

lim sup
n→∞

P
{
M [∥Sn∥ − 1

2λmin(Hn)M ] < −ϵ
}
≥ P

{
M [∥S∥ − 1

2λmin(H)M ] < −ϵ
}
→ 1

as M → ∞. Deduce that Dnφ̂n = Op(1). Since Pn|θ,γ ⊂ Pn|θ ⊂ Pn and 0 ∈ Pn|θ,γ , that Dnφ̂n|θ

and Dnφ̂n|θ,γ are stochastically bounded follows by the same argument.

Proof of Lemma C.4. (i). Since Φn → Φ0, Ln → L0 and ΛLU(·) is continuously differentiable
(Lemma B.1),

∇φθn(φ̃n)
p→ ∇φ vec{ΛLU[Φ0 + vec−1(φ)LT

0 ]}|φ=0 =(1)

[
Iq ⊗ LLU

0#ST×q2

]
= Θ

where =(1) follows by Lemmas B.2 and B.3. The probability limit of ∇φγn(φ̃n) follows similarly.
(ii). By Lemma C.3 and the remarks following (C.2), there exists a ballB(0, ϵ) of radius ϵ > 0,

centred on the origin, such that B(0, ϵ) ⊂ Pn for all n sufficiently large, and P{φ̂n|θ ∈ B(0, ϵ)} →
1. We may take ϵ sufficiently small that Φφ := Φn+vec−1(φ)LT

n has |λq+1(Φφ)| < |λq(Φn)| for all
n sufficiently large, for all φ ∈ B(0, ϵ). In particular, suppose φLU = 0; then (Φφ−Φn)Rn,LU = 0

and we have by Lemma B.2(i) that ΛLU(Φφ) = ΛLU(Φn) = C/n. It follows that θn(0, φ̂n,ST|θ) = 0

w.p.a.1., whence

0 = θn(φ̂n,LU|θ, φ̂n,ST|θ) = θn(φ̂n,LU|θ, φ̂n,ST|θ)− θn(0, φ̂n,ST|θ)

= [Θ + op(1)]
Tφ̂n,LU|θ = ΘTφ̂n,LU|θ + op(∥φ̂n,LU|θ∥)

by part (i) of the lemma and a mean value expansion. Hence, letting QΘ and QΘ,⊥ denote the
matrices that orthogonally project from R#LU onto spΘ and (spΘ)⊥ respectively, we have

Dnφ̂n|θ =

[
nI#LU 0

0 n1/2I#ST

][
QΘ +QΘ,⊥ 0

0 I#ST

][
φ̂n,LU|θ

φ̂n,ST|θ

]

=

[
QΘ,⊥ 0

0 I#ST

][
nφ̂n,LU|θ

n1/2φ̂n,ST|θ

]
+ op(n∥φ̂n,LU|θ∥) = QΘ,⊥Dnφ̂n|θ + op(∥Dnφ̂n|θ∥).

Proof of Proposition C.1. (i). Immediate from Lemma C.2.
(ii). As in the proof of Lemma C.4(ii), we may take ϵ > 0 such that B(0, ϵ) ⊂ Pn for all

n sufficiently large, and P{φ̂n|θ ∈ B(0, ϵ)} → 1. Hence w.p.a.1., φ̂n|θ satisfies the first-order
conditions for a constrained interior maximum,

∇φℓ
∗
n(φ̂n|θ) = DnSn −DnHn(Dnφ̂n|θ) = ∇φθn(φ̂n|θ)µn,
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where µn ∈ Rq2 is a vector of Lagrange multipliers; whence

Sn −Hn(Dnφ̂n|θ) = (nD−1
n )∇φθn(φ̂n|θ)(n

−1µn) =: Θn(n
−1µn) (C.5)

w.p.a.1. By a similar argument as given in the proof of Lemma C.4(ii), it follows from Lemma B.2(i)
that ∇φSTθn(0, φ̂n,ST|θ) = 0 w.p.a.1, and so by a a mean value expansion and Lemma C.3,

∇φSTθn(φ̂n|θ) = ∇φSTθn(φ̂n,LU|θ, φ̂n,ST|θ)−∇φSTθn(0, φ̂n,ST|θ) = Op(∥φ̂n,LU|θ∥) = Op(n
−1).

Deduce from the preceding and Lemma C.4(i) that

Θn = (nD−1
n )∇φθn(φ̂n|θ) =

[
∇φLUθn(φ̂n|θ)

n1/2∇φSTθn(φ̂n|θ)

]
p→ Θ,

which has full column rank. Let Θ⊥ := diag{Θ⊥, I#ST}, a full column rank matrix for which
ΘT

⊥Θ = 0; then Θn,⊥ := [Ikp2 −Θn(Θ
T
nΘn)

−1ΘT
n ]Θ⊥

p→ Θ⊥ and ΘT
n,⊥Θn = 0 for all n. Hence

w.p.a.1

0 =(1) Θ
T
n,⊥Sn −ΘT

n,⊥Hn(Dnφ̂n|θ)

=(2) Θ
T
n,⊥Sn −ΘT

n,⊥Hn[Θ⊥(Θ
T
⊥Θ⊥)

−1ΘT
⊥(Dnφ̂n|θ) + op(∥Dnφ̂n|θ∥)]

where =(1) follows from premultiplying (C.5) by ΘT
n,⊥, and =(2) from Lemma C.4(ii). A further

appeal to that result and rearranging the preceding yields

Dnφ̂n|θ = QΘ,⊥Dnφ̂n|θ + op(∥Dnφ̂n|θ∥) = Θ⊥(Θ
T
n,⊥HnΘ⊥)

−1ΘT
n,⊥Sn + op(1 + ∥Dnφ̂n|θ∥).

The result then follows by Lemmas C.2 and C.3.
(iii). From parts (i) and (ii) and Lemma C.2 we have

2[ℓ∗n(φ̂n)− ℓ∗n(0)]⇝ ST
LUH

−1
LU SLU + ST

STH
−1
ST SST (C.6)

2[ℓ∗n(φ̂n|θ)− ℓ∗n(0)]⇝ ST
LUΘ⊥(Θ

T
⊥HLUΘ⊥)

−1ΘT
⊥SLU + ST

STH
−1
ST SST (C.7)

whence the result follows by subtracting (C.7) from (C.6) and noting that

H
−1/2
LU Θ(ΘTH−1

LU Θ)−1ΘTH
−1/2
LU +H

1/2
LU Θ⊥(Θ

T
⊥HLUΘ⊥)

−1ΘT
⊥H

1/2
LU = Ipq

since the columns of H−1/2
LU Θ and H

1/2
LU Θ⊥ are mutually orthogonal, and collectively span the

whole of Rpq.
(iv). The same argument as which yielded (C.7) also gives

2[ℓ∗n(φ̂n|θ,γ)− ℓ∗n(0)]⇝ ST
LUΠ⊥(Π

T
⊥HLUΠ⊥)

−1ΠT
⊥SLU + ST

STH
−1
ST SST (C.8)

so that subtracting (C.8) from (C.7), and recalling Π⊥ = Θ⊥Ξ, yields

2[ℓ∗n(φ̂n|θ)− ℓ∗n(φ̂n|θ,γ)]⇝ ST
LUΘ⊥(Θ

T
⊥HLUΘ⊥)

−1ΘT
⊥S

T
LU − ST

LUΠ⊥(Π
T
⊥HLUΠ⊥)

−1ΠT
⊥)SLU
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= (ΘT
⊥SLU)

T[H−1
Θ,⊥ − Ξ(ΞTHΘ,⊥Ξ)

−1ΞT](ΘT
⊥SLU)

= (H
−1/2
Θ,⊥ ΘT

⊥SLU)
T[Iqr −H

1/2
Θ,⊥Ξ(Ξ

THΘ,⊥Ξ)
−1ΞTH

1/2
Θ,⊥](H

−1/2
Θ,⊥ ΘT

⊥SLU).

Proof of Proposition C.2. Recall the definitions of Rn = [Rn,LU,Rn,ST] and Ln = [Ln,LU,Ln,ST]

given at the beginning of this appendix. Since Ikp = Rn,LUL
T
n,LU +Rn,STL

T
n,ST, we may write

Φ̃n = Φn + [(Φ̃n −Φn)Rn,LU]L
T
n,LU + [(Φ̃n −Φn)Rn,ST]L

T
n,ST =: Φn + ∆̃n,LU + ∆̃n,ST.

Since ∆̃n,LU = op(1) and Φn → Φ0, we have |λq+1(Φn + ∆̃n,ST)| < |λq(Φn)| w.p.a.1, and so by
Lemma B.2(i)

A(Φ̃n)−A(Φn) = A(Φn + ∆̃n,ST + ∆̃n,LU)−A(Φn + ∆̃n,ST) (C.9)

w.p.a.1. Since A(·) is smooth, a second-order Taylor series expansion and Lemma B.2(ii) yield

vec{A(Φn + ∆̃n,ST + ∆̃n,LU)−A(Φn + ∆̃n,ST)}

= [JA(Φn + ∆̃n,ST) + op(1)] vec{∆̃n,LURLU(Φn + ∆̃n,ST)}

= [JA(Φ0) + op(1)] vec{∆̃n,LURn,LU} (C.10)

where the second equality holds w.p.a.1, and follows from the continuity of JA (Lemma B.2(iii)),
Φn + ∆̃n,ST = Φ0 + op(1), and RLU(Φn + ∆̃n,ST) = RLU(Φn) = Rn,LU (w.p.a.1, as implied by
Lemma B.2(i)). Finally, since

∆̃n,LURn,LU = [(Φ̃n −Φn)Rn,LU]L
T
n,LURn,LU = (Φ̃n −Φn)Rn,LU, (C.11)

the first part of (C.4) follows from (C.9)–(C.11). The proof of the second part is analogous.

D Limiting experiments

The assumptions DGP and LOC are maintained throughout this appendix. Recall the re-parametrisation
given in (3.9) above, which in view of (C.1) we can equivalently write as

π := n vec

[
A[Φn + vec−1(φ)LT

n ]−A(Φn)

ΛLU[Φn + vec−1(φ)LT
n ]− ΛLU(Φn)

]
(D.1a)

f := n1/2φST. (D.1b)

Under LOC, Rn,ST and Λn,ST associated with {Φn} ⊂ P are constant (see LOC3), so Rn,ST = R0,ST

for all n ∈ N, so that in particular φST = vec{(Φ − Φn)Rn,ST}. Let ψn(φ) denote the smooth
mapping φ 7→ (π, f) implied by (D.1), which has domain Pn (defined in (C.2) above) and
ψn(0) = 0 for all n ∈ N.

Lemma D.1.
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(i) There exists an n0 ∈ N and an open neighbourhood N ⊂ Rkp2 of the origin, such that ψn

is a smooth diffeomorphism on N , for all n ≥ n0

(ii) Let K ⊂ Rkp2 be any compact neighbourhood of zero. Then there exists an n1 ≥ n0 such
that ψ−1

n is well defined (and smooth) on K, for all n ≥ n1. Moreover, for any (π, f) ∈ K,
φn := ψ−1

n (π, f) is such that Dnφn = O(1).

Thus so long as we restrict attention to φ ∈ N , we may equivalently parametrise the model
in terms of (π, f). For a given (π, f) ∈ Rkp2 , ψ−1

n is well-defined (and smooth) at (π, f) for all
n sufficiently large, in which case we shall define (with a slight abuse of notation) ℓn(π, f) :=

ℓn(φ,Σ), where φ = ψ−1
n (π, f); and set ℓn(π, f) := −∞ otherwise (to simplify arguments, we

treat Σ as known here.) To state our next result, recall the definitions of Sπ and Hπ given in
(3.13).

Lemma D.2. Jointly over any finite collection of (π, f) ∈ Rkp2,

ℓn(π, f)− ℓn(0, 0)⇝ [ST
ππ − 1

2π
THππ] + [ST

STf − 1
2f

THSTf ].

We next show that, up to the term depending on f , the preceding is also the limit of the
loglikelihood ratio process in a multivariate predictive regression with a known covariance matrix;
recall PR given in Section 3.2.

Lemma D.3. Suppose that {yPR,t} and {zPRt} are generated under PR, and that ξt = [ ξytξzt
] ∼i.i.d.

N [0,Ω] with Ω = KΣKT. Then for

π = n vec

[
A−A(Φn)

Λ− ΛLU(Φn)

]
,

we have, jointly over any finite collection of π ∈ Rpq

ℓn,PR(π)− ℓn,PR(0)⇝ ST
ππ − 1

2π
THππ,

where ℓn,PR(π) is the loglikelihood defined in Theorem 3.1.

Finally, we show that when (the entirety of) Φ is in unknown, and the model is estimated
subject to the constraint (D.1a), then the limit of the concentrated loglikelihood ratio process is
asymptotically identical to that of the predictive regression, up to (random) terms that do not
depend on π. Let f̂n|π := n1/2φ̂n,ST|π, where φ̂n|π denotes the maximiser of ℓ∗n(φ) subject to φ
satisfying (D.1a).

Lemma D.4. Jointly over every finite collection of π ∈ Rpq,

ℓn(π, f̂n|π)− ℓn(0)⇝ ST
ππ − 1

2π
THππ + ST

STH
−1
ST SST

Proof of Lemma D.1. Consider the mapping Ψ and the permutation matrix M ∈ Rpq×pq such
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that

Ψ(Φ) :=

 vecA(Φ)

vecΛLU(Φ)

vecΦR0,ST

 MΨ(Φ) :=

[
M 0

0 I#ST

]
Ψ(Φ) =

vec
[
A(Φ)

ΛLU(Φ)

]
vecΦR0,ST

 (D.2)

By Lemmas B.1 and B.2, Ψ is smooth and at Φ = Φ0 has first differential

dΨ =

JA(Φ0) 0

JΛ(Φ0) 0

0 I#ST

([RT
0,LU

RT
0,ST

]
⊗ Ip

)
vec(dΦ). (D.3)

The Jacobian on the r.h.s. is invertible by Lemma A.1(iii) and Lemma B.3 (for the latter, since
ΛLU(Φ0) = Iq). Thus by the inverse mapping theorem, there is an open neighbourhood NP ⊂ P

of Φ0 on which Ψ has a smooth inverse.
Now let τn(φ) := Φn+vec−1(φ)LT

n , which converges (uniformly on compacta) to a linear and
invertible mapping τ0(φ) for which τ0(0) = Φ0. Hence there exists an n0 ∈ N and a (fixed) open
neighbourhood N ⊂ Pn of zero such that τn(N) ⊂ NP , for all n ≥ n0, with τn being invertible
on N . By composition, the sequence of maps defined by

D−1
n ψn(φ) = M{Ψ[τn(φ)]−Ψ(Φn)} (D.4)

is smooth and invertible on N , for all n ≥ 0, and has a smooth inverse there; hence part (i)
holds. Finally, since the image of N under the r.h.s. must itself be an open neighbourhood of
zero, and [

π

f

]
= ψn(φ) = DnM{Ψ[τn(φ)]−Ψ(Φn)}, (D.5)

we may deduce that for any compact neighbourhood K of zero, there is an n1 ≥ n0 such that
the inverse ψ−1

n is well-defined and smooth for all (π, f) ∈ K, for all n ≥ n1. Finally, to show
that the φn := ψ−1

n (π, f) has Dnφn = O(1), we note that since the r.h.s. of (D.4) is (locally to
zero) a diffeomorphism, which itself equals zero at φ = 0, the fact that

M{Ψ[τn(φn)]−Ψ(Φn)} = D−1
n

[
π

f

]
→ 0

must imply that φn → 0. Hence follows from (D.3) and (D.5) that, by a Taylor expansion of
(D.5) around φ = 0, [

MJ + op(1) 0

0 I#ST

][
φn,LU

φn,ST

]
= D−1

n

[
π

f

]
whence Dnφn = O(1) as claimed. Thus part (ii) holds.

Proof of Lemma D.2. In view of Lemma D.1, we may take n sufficiently large such that ψ−1
n is

well defined at (π, f). Let φ∗
n := ψ−1

n (π, f) = o(1), Φ∗
n := Φn + vec−1(φ∗

n)L
T
n , and M ∈ Rpq×pq
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be as in (D.2). Then by Proposition C.2, for J := J(Φ0)

π = n vec

[
A(Φ∗

n)−A(Φn)

ΛLU(Φ
∗
n)− ΛLU(Φn)

]
= [MJ + o(1)]nφ∗

n,LU (D.6)

where by Lemma B.3 and the definition of M ,

MJ =M

[
Iq ⊗ J
Iq ⊗ LT

LU

]
= Iq ⊗

[
J
LT

LU

]
=: Iq ⊗K

for J and K as defined in (3.10). Noting also that n1/2φ∗
n,ST = f , it follows from Lemma C.2

and (D.6) that

ℓn(π, f)− ℓn(0, 0) = ℓn(φ
∗
n,LU, φ

∗
n,ST)− ℓn(0, 0)

= ST
n (Dnφ

∗
n)− 1

2(Dnφ
∗
n)

THn(Dnφ
∗
n)

⇝ [ST
LU(MJ)−1π − 1

2π
T[(MJ)−1]THLU(MJ)−1π] + [ST

STf − 1
2f

THSTf ].

To complete the proof, we note that

[(MJ)−1]TSLU = (Iq ⊗K−1)T
∫ 1

0
[Z̄C(r)⊗ Σ−1dE(r)]

=

∫ 1

0
[Z̄C(r)⊗ (KΣKT)−1/2dW (r)] = Sπ

where we have used that E(s) = Σ−1/2W (s) and,

[(MJ)−1]THLU(MJ)−1 = (Iq ⊗K−1)T
(∫

Z̄CZ̄
T
C ⊗ Σ−1

)
(Iq ⊗K−1)

=

∫
Z̄CZ̄

T
C ⊗ (KΣKT)−1 = Hπ.

Proof of Lemma D.3. Letting Π = [APR
ΛPR

] and noting that π = n vec(Π− [
A(Φn)

ΛLU(Φn)
]), we have

ℓPR
n (π) = Kn − 1

2

n∑
t=1

∥xt −Πzt−1∥Ω−1 ,

where Kn := −n
2 log(2π log detΩ). It then follows by exactly the same arguments as were used

in the proof of Lemma C.2 that

ℓn,PR(π)− ℓn,PR(0) = ST
n,PRπ − 1

2π
THn,PRπ

where

Sn,PR =
1

n

n∑
t=1

(z̄t−1 ⊗ Ω−1/2ηt) Hn,PR =
1

n

n∑
t=1

(z̄t−1z̄
T
t−1 ⊗ Ω−1).

Under PR, it follows by Lemma C.1(iii) that n−1/2z̄⌊nr⌋ ⇝ Z̄C,PR(r) on D[0, 1], where Z̄C,PR(r)
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denotes the residual from the projection of

ZC,PR(r) :=

∫ r

0
eC(r−s)Ω1/2

zz dW (s) (D.7)

on a constant and a linear trend, and we have partitioned Ω = [
Ωyy Ωyz

Ωzy Ωzz
] conformably with

ξt = [ ξytξzt
]. Then by the continuous mapping theorem and the same arguments as used in the

proof of Lemma C.1(iv),

Sn,PR ⇝
∫ 1

0
[Z̄C,PR(r)⊗ Ω−1/2W (r)] dr Hn,PR ⇝

∫
Z̄C,PRZ̄

T
C,PR ⊗ Ω−1. (D.8)

Thus we can bring (D.7) into agreement with (3.6), and the limits on the r.h.s. of (D.8) with
(3.13), by setting

Ω =

[
Ωyy Ωyz

Ωzy Ωzz

]
=

[
JΣJ T JΣLLU

LT
LUΣJ T LT

LUΣLLU

]
= KΣKT.

Proof of Lemma D.4. We first show that Dnφ̂n|π = Op(1). By Lemma D.1, for all n sufficiently
large, there exists a (deterministic) sequence φn|π ∈ Pn with Dnφn|π = O(1), such that (D.1a)
holds at φ = φn|π. It follows from Lemma C.2 that for each ϵ > 0, there exists an N <∞ such
that

lim sup
n→∞

P{ℓ∗n(φn|π)− ℓ∗n(0) < −N} < ϵ/2.

On the other hand, adapting the argument given in the proof of Lemma C.3, we may also choose
M <∞ sufficiently large such that

P

{
sup

{φ∈Pn|∥Dnφ∥≥M}
[ℓ∗n(φ)− ℓ∗n(0)] < −2N

}
≥ P

{
M [∥Sn∥ − 1

2λmin(Hn)M ] ≤ −2N
}

> 1− ϵ/2

for all n sufficiently large. Deduce that with probability at least 1 − ϵ, ℓ∗n(φn|π) must strictly
exceed ℓn(φ) over all φ ∈ Pn with ∥Dnφ∥ ≥ M ; it follows that the constrained maximiser φ̂n|π

must have ∥Dnφ̂n|π∥ < M . Deduce that Dnφ̂n|π = Op(1) as claimed.
Now it follows from (D.3) and (D.5) that, at φ = φ̂n|π,[

dπ

df

]
=

[
MJ + op(1) 0

0 I#ST

]
Dndφ

and hence

Dndφ =

[
(MJ)−1 + op(1) 0

0 I#ST

][
dπ

df

]

at (π, f̂n|π). Thus
nφ̂n,LU = [(MJ)−1 + op(1)]π, (D.9)

and since f̂n|π must satisfy the first-order conditions for a maximum, we have from Lemma C.2
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that

∇f ℓn(π, f̂n|π) = ∇f [S
T
n (Dnφ)− 1

2(Dnφ)
THn(Dnφ)]f=f̂n|π

= Sn,ST − (nφ̂n,LU|π)
THn,LS −Hn,STn

1/2φ̂n,ST|π

whence
n1/2φ̂n,ST|π = H−1

n,STSn,ST + op(1)⇝ H−1
ST SST. (D.10)

Thus, in view of (D.9) and (D.10), the weak limit of

ℓn(π, f̂n|π)− ℓn(0) = ℓ∗n(φ̂n|π)− ℓ∗n(0) = ST
n (Dnφ̂n|π)− 1

2(Dnφ̂n|π)
THn(Dnφ̂n|π)

is as claimed.

E Proofs of theorems

Proof of Theorem 3.1. This follows directly from Lemmas D.2–D.4, noting in particular that
ℓ∗n(π) = ℓn(π, f̂n|π), where the latter is as appears in Lemma D.4.

Proof of Theorem 3.2. (i). In the notation of Appendix C, φ̂n,LU = vec{(Φ̂n −Φn)Rn,LU}. By
Proposition C.1(i)

n vec{(Φ̂n −Φn)Rn,LU}⇝

[(∫
Z̄CZ̄

T
C

)−1

⊗ Ip

]∫ 1

0
[Z̄C(r)⊗ dE(r)]

= vec

{∫
(dE)Z̄T

C

(∫
Z̄CZ̄

T
C

)−1
}
,

and so by Proposition C.2[
vec{A(Φ̂n)−A(Φn)}

vec{ΛLU(Φ̂n)− ΛLU(Φn)}

]
⇝

[
JA(Φ0)

JΛ(Φ0)

]
vec

{∫
(dE)Z̄T

C

(∫
Z̄CZ̄

T
C

)−1
}
. (E.1)

Since Φn → Φ0 with ΛLU(Φ0) = Iq under LOC, we have by Lemma B.3 that[
JA(Φ0)

JΛ(Φ0)

]
=

[
Iq ⊗ βTRST(Ikp−q − ΛST)

−1LT
ST

Iq ⊗ LT
LU

]
. (E.2)

The result then follows from (E.1) and (E.2), by reversing the vectorisation.
(ii). In the notation of Appendix C, maximising ℓ∗n(Φ) subject to ΛLU(Φ) = Λn,LU =

Iq+C/n corresponds to maximising ℓn(φ) subject to θn(φ) = 0. Thus φ̂n,LU|θ = vec{(Φ̂n|Λn,LU −
Φn)Rn,LU}, and so by Proposition C.1(ii)

n vec{(Φ̂n|Λn,LU −Φn)Rn,LU}⇝ Θ⊥(Θ
T
⊥HLUΘ⊥)

−1ΘT
⊥SLU
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where Θ⊥ = Iq ⊗ LLU,⊥. Hence by Proposition C.2,

vec{A(Φ̂n|Λn,LU)−A(Φn)}⇝ JA(Φ0)Θ⊥(Θ
T
⊥HLUΘ⊥)

−1ΘT
⊥SLU.

To determine the distribution of the r.h.s., we note that

ΘT
⊥SLU =

∫ 1

0
[Z̄C(r)⊗ LT

LU,⊥Σ
−1dE(r)] =:

∫ 1

0
[Z̄C(r)⊗ dU(r)]. (E.3)

Recall that Z̄C is a function only of ZC , which from (3.6) is given by

ZC(r) =

∫ r

0
eC(r−s)LT

LUdE(s) =:

∫ r

0
eC(r−s)dV (s). (E.4)

(U, V ) = (LT
LU,⊥Σ

−1E,LT
LUE) is a pair of vector Brownian motions, with covariance

EU(1)V (1)T = LT
LU,⊥Σ

−1E[E(1)E(1)T]LLU = LT
LU,⊥LLU = 0;

whence U and V are independent. In particular, we have from (E.4) that U is independent of
Z̄C . This, combined with the fact that

JA(Φ0)Θ⊥(Θ
T
⊥HLUΘ⊥)

−1 =

(∫
Z̄CZ̄

T
C

)−1

⊗ JLLU,⊥(L
T
LU,⊥Σ

−1LLU,⊥)
−1

depends only on Z̄C , implies JA(Φ0)Θ⊥(Θ
T
⊥HLUΘ⊥)

−1ΘT
⊥SLU is mixed normal with variance(∫

Z̄CZ̄
T
C

)−1

⊗ JLLU,⊥(L
T
LU,⊥Σ

−1LLU,⊥)
−1LT

LU,⊥J T,

which proves (3.14).
Finally, note that the preceding holds for any choice of LLU,⊥ ∈ Rp×r having full column rank

and LT
LU,⊥LLU = 0. Let α := Φ0(1)β(β

Tβ)−1 ∈ Rp×r, where Φ0(1) := limn→∞Φn(1); then

LT
LUα = LT

LUΦ0(1)β(β
Tβ)−1 = 0

by (2.6) with ΛLU = ΛLU(Φ0) = Iq. Further, rkα = r since spΦ0(1) = spβ, and thus we may
indeed choose LLU,⊥ = α. In this case,

JLLU,⊥ = βTRST(Ikp−q − ΛST)
−1LT

STΦ0(1)β(β
Tβ)−1 =(1) β

Tβ(βTβ)−1 = Ir,

where =(1) follows from (B.16) above. Thus (3.15) is proved.

Proof of Theorem 3.3. We first prove (3.17). In the notation of Appendix C, LRn(Λn,LU) =

2[ℓ∗n(φ̂n)− ℓ∗n(φ̂n|θ)]. By Proposition C.1(iii),

LRn(Λn,LU)⇝ ST
LUH

−1
LU Θ(ΘTH−1

LU Θ)−1ΘTH−1
LU SLU =: LR,

where Θ = Iq⊗LLU, SLU =
∫
[Z̄C(r)⊗Σ−1dE], and HLU =

∫
Z̄CZ̄

T
C⊗Σ−1. To obtain the claimed
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expression for LR, note that

SLU =

∫
[Z̄C(r)⊗ Σ−1dE] = vec

{
Σ−1

∫
(dE)Z̄T

C

}
and

H−1
LU Θ(ΘTH−1

LU Θ)−1ΘTH−1
LU =

(∫
Z̄CZ̄

T
C

)−1

⊗ ΣLLU(L
T
LUΣLLU)

−1LT
LUΣ

whence, using vec(A)T vec(B) = tr(ATB),

LR = tr

{
∆−1/2LT

LU

∫
(dE)Z̄T

C

(∫
Z̄CZ̄

T
C

)−1 ∫
Z̄C(dE)TLLU∆

−1/2

}
(E.5)

where ∆ := LT
LUΣLLU. To simplify this further, note that LT

LUE is a q-dimensional Brownian
motion with variance ∆, and so for W∗(r) := ∆−1/2LT

LUE(r) ∼ BM(Iq), we have

ZC(r) =

∫ r

0
eC(r−s)LT

LUdE(s) =

∫ r

0
eC(r−s)∆1/2dW∗(s)

=(1) ∆
1/2

∫ r

0
eC∗(r−s)dW∗(s) =: ∆

1/2ZC∗(r)

where C∗ := ∆−1/2C∆1/2 is as in the statement of the theorem, and =(1) follows from eCD =

DeD
−1CD for any nonsingular D. Hence Z̄C(r) = ∆1/2Z̄C∗(r), whereupon (3.17) follows from

(E.5) and the definition of W∗.
We next prove (3.18). Maximisation of ℓ∗n(Φ) subject to ΛLU(Φ) = Iq+C/n and aij(Φ) = a0

corresponds, in the notation of Appendix C, to maximisation of ℓn(φ) subject to θn(φ) = 0 and
γn(φ) = 0. Therefore by Proposition C.1(iv),

LRn[aij(Φn); Λn,LU] = 2[ℓn(φ̂n|θ)− ℓn(φ̂n|θ,γ)]⇝ (H
−1/2
Θ,⊥ ΘT

⊥SLU)
T[Iqr −Q](H

−1/2
Θ,⊥ ΘT

⊥SLU).

Recall from (E.3) and the subsequent arguments that

vec{ΘT
⊥SLU} =d

(∫
Z̄CZ̄

T
C ⊗ LT

LU,⊥Σ
−1LLU,⊥

)1/2

η

for η ∼ N[0, Iqr] independent of Z̄C , and therefore also of

HΘ,⊥ = ΘT
⊥HLUΘ⊥ =

∫
Z̄CZ̄

T
C ⊗ LT

LU,⊥Σ
−1LLU,⊥.

Thus vec{H−1/2
Θ,⊥ ΘT

⊥SLU} ∼ N[0, Iqr] is independent of HLU, and therefore also of Q. The result

follows by noting that H1/2
Θ,⊥Ξ has rank qr − 1 a.s., whence Iqr −Q projects orthogonally onto a

subspace of dimension 1, a.s.
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F Computational appendix

F.1 Test statistics

Computation of Caij |Λ0
and CNP involves maximising ℓ∗n(Φ) subject to the restrictions that

ΛLU(Φ) = Λ0 for some specified Λ0 ∈ L , and possibly also that for and aij(Φ) = a0 for
some a0 ∈ R. To implement this estimator numerically, we introduce the constraint[

A

Iq

]
Λk
0 −

k∑
i=1

Φi

[
A

Iq

]
Λk−i
0 = 0, (F.1)

which incorporates (2.6) and (3.3) above: it forces Φ(λ) to have roots at the eigenvalues of Λ0,
and the associated RLU matrix to respect the normalisation (3.3). We then proceed as follows:

(i) Given A ∈ Rr×q and Λ0 ∈ L , maximise ℓ∗n(Φ) over Φ ∈ Rp×kp, subject to (F.1), to
obtain the maximum likelihood estimate Φ̂n|A,Λ0

using two-step, restricted least-squares
estimation. This is straightforward, since (F.1) is a linear restriction on Φ (see Lütkepohl,
2007, Ch. 7).

(ii) Using a general purpose optimiser, compute

max
A∈Rr×q

ℓ∗n(Φ̂n|A,Λ0
). (F.2)

The maximum of ℓ∗n(Φ) subject to ΛLU(Φ) = Λ0 and aij(Φ) = a0 obtains by holding restricting
aij when computing the maximum in (F.2). Point estimates of Φ that merely impose the
requirement that Λ0 ∈ L (as appears e.g. in (3.16a)) obtain by maximising ℓ∗n(Φ̂n|A,Λ0

) over
both A and Λ0 ∈ L .

When q = 1, and in the special case where Λ0 = λ0Iq, (F.2) simplifies so that model (3.1)
becomes

∆λ0yt = m+ dt− λ−k+1
0 Φ(λ0)yt−1 +

p−1∑
i=1

Ψi∆λ0yt−i (F.3)

where ∆λ0yt := yt − λ0yt−1 denotes a quasi-difference (see Lemma A.5). Since Φ(λ0) has rank
p − q = r, ℓ∗n(Φ) can then be efficiently maximised, subject to ΛLU(Φ) = λ0Iq, via a reduced
rank regression, exactly as in Johansen (1995, Ch. 6).

When q ≥ 2, some care needs to be taken with the parametrisation of L . If we take this to
be either the set of real normal (Ln) or symmetric (Ls) matrices, then each ΛLU ∈ L can be
expressed as ΛLU = QDLUQ

T, where Q ∈ Rq×q is an orthogonal matrix (QTQ = Iq) and DLU is
a block diagonal, with blocks that are either: 1× 1 and equal to each of the real eigenvalues of
ΛLU, or (2 × 2) and of the form [ a b

−b a ], if ΛLU has a pair of complex eigenvalues at λ = a ± ib

(Horn and Johnson, 2013, Thm. 2.5.6 and 2.5.8). Since Q can be constructed from q(q − 1)/2

plane rotations (Horn and Johnson, 2013, Prob. 2.1.P29), both Ln and Ls can thus be expressed
in terms of of q(q + 1)/2 free parameters lying in a compact set.
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F.2 Nearly optimal tests

For simplicity of exposition, suppose that p = 2 and q = r = 1, so that A = a and ΛLU = λLU.
We want to test

H0 : a = a0, λLU ∈ L against H1 : a ̸= a0, λLU ∈ L ,

where L = [ρ, 1] for some user-chosen ρ < 1. Let F0 and F1 denote discrete distributions on
R × L , that respectively concentrate on those subsets of the parameter space consistent with
the null and the alternative. Consider a test of the form

NPn(a) := 1

{∫
R×L

eℓ
∗
n(a,λ)F1(da,dλ) > cvα

∫
L
eℓ

∗
n(a0,λ)F0(a0, dλ)

}
To implement the procedure of Elliott et al. (2015), we require estimates of the following prob-
abilities:

(i) the null rejection probability P(a0,λ){NPn(a0) = 1} for λ in (a discretisation of) L ;

(ii) the weighted null rejection probability
∫
P(a0,λ){NPn(a0) = 1}F0(a0, dλ); and

(iii) the power under the weighted alternative,
∫
R×L P(a,λ){NPn(a0) = 1}F1(da,dλ).

In view of Theorem 3.1, aside from (a, λ) the only parameter that these probabilities depend on,
in large samples, is the long-run covariance matrix Ω := KΣKT.

Suppose for the moment that Ω = Ω0 is known. To estimate the probabilities in (i)–(iii), we
only need to simulate data from a VAR with the same implied values of a, λ and Ω0. Fixing (a, λ),
consider the bivariate VAR(1) with autoregressive coefficient matrix Φ(a, λ) := R(a)Λ(λ)L(a)T,
where

R(a) =
[
RLU(a) RST

]
=

[
a 1

1 0

]
Λ(λ) = diag{λ, λST} L(a)T =

[
LLU(a)

T

LST(a)
T

]
:= R(a)−1,

where we may take λST = 0. The implied quasi-cointegrating relation is β(a)T = (1,−a). Then
taking

K(a) :=

[
β(a)TRST(1− λST)

−1LST(a)
T

LLU(a)
T

]
we can ensure that the implied Ω in this model agrees with Ω0, at the null value of a, by setting
the variance matrix Σ of the reduced-form errors to

Σ0 := K(a0)
−1Ω0[K(a0)

T]−1.

Now for (a, λ) ∈ R × L , let Y (b)
n (a, λ) := {y(b)t }nt=1 denote a sample of length n (i.e. of the

same length as the observed sample) generated as

y
(b)
t = Φ(a, λ)y

(b)
t−1 +Σ

1/2
0 wt

where wt ∼i.i.d. N [0, Ip], with y(b)0 = 0. For each (a, λ) lying on a discrete grid that contains the
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supports of F0 and F1, we generate a total of B = 20, 000 such samples. Let ℓ∗n[Φ;Y
(b)
n (a, λ)]

denote the model loglikelihood (with the deterministic terms concentrated out), computed on
the basis of the data Y (b)

n (a, λ). For another (or possibly the same) (a′, λ′) ∈ R× L , define

ℓ̂(b)n (a′, λ′ | a, λ) := max
{Φ∈P|ΛLU(Φ)=λ′,A(Φ)=a′}

ℓ∗n[Φ;Y (b)
n0

(a, λ)]

to be the concentrated loglikelihood at A(Φ) = a′ and ΛLU(Φ) = λ′. Then we can compute

NP(b)
n (a0 | a, λ) := 1

{∫
R×L

exp{ℓ∗n(a′, λ′ | a, λ)}F1(da
′, dλ′)

> cvα

∫
L
exp{ℓ∗n(a0, λ′ | a, λ)}F0(a0,dλ

′)

}

as the realisation of the nearly optimal test on the dataset Y (b)
n (a, λ). Hence we can estimate the

probabilities in (i)–(iii) above by replacing each instance of P(a,λ){NPn(a0) = 1} with

1

B

B∑
b=1

NP(b)
n (a0 | a, λ)

for each value of (a, λ) ∈ R× L (in practice, for a discrete subset thereof).
Finally, since Ω0 is unknown, it needs to be consistently estimated. To that end, we recognise

that for εLU,t = LT
LUεt

Ω = KΣKT = lrvar

([
βTxt

εLU,t

])
,

where the final equality follows in particular by observing that

∞∑
l=−∞

E(βTxt)εTLU,t−l = βTεtεLU,t + βTRSTΛ
k
ST

∞∑
l=1

EzST,t−1ε
T
LU,t−l

= βT

[
I +RSTΛ

k
ST

∞∑
l=0

Λl
STL

T
ST

]
ΣLLU

=(1) β
TRST

[
Λk−1

ST + Λk
ST(I − ΛST)

−1
]
LT

STΣLLU

= βTRSTΛ
k−1
ST (I − ΛST)

−1LT
STΣLLU

=(2) β
TRST(I − ΛST)

−1LT
STΣLLU,

where =(1) follows by RΛk−1LT = Ip and βTRLU = 0, and =(2) by RΛiLT = 0 for i ∈ {0, . . . , k−
2}, which are themselves implied by RLT = Ikp (see Lemma A.1). Hence we can estimate Ω

by computing ML estimates of β and LLU (under only the restriction that ΛLU(Φ) ∈ L ), and
then computed an estimate (after demeaning and detrending) of the long-run covariance matrix
of β̂Tyt and L̂T

LUε̂t, where ε̂t denote the VAR residuals.
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