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be beneficial for the quality of innovative end-products under certain circumstances.

Keywords: Firm Strategy, Enterprise Policy, Innovation, Inventions.

JEL Classification: L51, L53, O31, O34.

1 Introduction

This paper is devoted to the issues of modern research and development (R&D) races.

Specifically, we focus on the incentives behind industrial cyberespionage and how it in-

fluences R&D investments, research companies’ profits, and the end-product quality. We

define industrial cyberespionage as the practice of obtaining competitors’ secrets and
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information stored in digital formats without permission in order to gain an economic

advantage. It can be performed using various hacking techniques, malicious software or

social engineering methods. Cyberespionage may be wholly conducted online or involve

infiltration by computer-trained spies and moles. Seemingly any modern espionage is

cyberespionage since it is improbable that it would not involve at least some information

communication technology (ICT).

It is straightforward to find examples of industrial cyberespionage in the news feed.

For example, in October 2018, the supply chain of technological giant Super Micro was

infiltrated by Chinese adversaries. They created a backdoor in some of Super Micro’s

server equipment that would allow them to steal corporate secrets in the future (Lynch,

2018). In November 2018, the US justice department filed criminal charges against Fujian

Jinhua, a Chinese state-owned company, for the alleged theft of trade secrets worth up

to $8.75 billion from Micron, an American semiconductor manufacturer (Shubber, 2018).

Industrial espionage has caused an enormous loss for the global economy. For instance,

The Commission on the Theft of American Intellectual Property (2017) estimated that

espionage via hacking costs between $180 billion and $540 billion annually to the US

economy.

The situation aggravates every year with an increasing number of organisations and

individuals being affected. The current COVID-19 crisis makes this even more apparent.

During the crisis, national security agencies reported a significant increase in cyberespi-

onage activity over the globe. People stay at home during lockdowns, stressed, and often

violate good cybersecurity practices. It creates an excellent attack surface for a series of

social-engineering attacks performed by state-backed hacking groups (Warrell & Manson,

2020).

2



Cyberespionage has become an inalienable part of contemporary competition. Nonethe-

less, the phenomenon has not been rigorously studied under the competitive framework.

We fill this gap by developing a multi-stage R&D race model with endogenous espionage

decisions. The model is built on a rank-order tournament framework by Lazear and

Rosen (1981), which is consistent with innovative activity as it embeds a degree of un-

certainty in companies’ decisions and has a relativistic award mechanism that resembles

the patenting process.

We extend Lazear and Rosen’s framework to consider two ex-ante identical companies

that compete in an R&D race over two stages for a better innovation to acquire the

market. During the initial research stage, rivals invest in research to obtain superior

technology—a technological edge. In order to obtain a technological edge, a company

must outperform its opponent by a substantial margin, which we call a technological

step. During the following development stage, companies invest again to perfect their

technologies and release them to the market.

Espionage incentives may arise from the difference in relative positions of competitors

who race to innovate. If the gap between rivals is sufficiently large, it will create a

strong incentive for the underdog company to steal the leader’s intellectual property.

Thus, cyberespionage might increase an underdog’s chances of success and its expected

profits. For example, an attacker can obtain classified information to manufacture copy-

cat products and gain market share.

If one of the companies gains a technological edge in the research stage, it utilises

this advantage in the development stage to achieve better innovation and increase its

chances of winning the market. A company that has not gained a technological edge (an

underdog) can choose to perform a cyberattack at a fixed cost to steal a fraction of the
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competitor’s technological edge in an attempt to equalise the chances in the development

stage. If neither company gains a technological edge in the research stage, the race

continues with the symmetric development stage, where both companies have the same

available technologies, and nobody performs industrial espionage. By the end of the

game, the company with a better innovative product wins the race and obtains all the

market to itself. The framework is stated formally and in greater detail at the beginning

of Section 2.

The study makes two main contributions. First, we demonstrate that industrial espi-

onage has an ambiguous influence on the overall investments exerted in the race. Espi-

onage negatively influences the investments in the research stage and positively influences

the investments in the development stage. Intuitively, none of the companies would be

willing to invest in the technological edge during the initial research stage, knowing that

it is most likely to be stolen. However, if one firm gets far ahead in the research stage,

its rival might “give up” in the development stage. On the other hand, if it catches up

with the opponent (through espionage or otherwise), it will want to compete because

it has a realistic chance of winning. Therefore, by regulating the power of industrial

espionage through legal means, a policymaker can control competitive incentives in the

R&D race and maximise investments. Cyberespionage can maximise firms’ payoffs from

participating in the R&D race and make the race more attractive for them.

Second, we investigate the welfare implications of cyberespionage. Social welfare is

measured by the quality of the innovative product delivered to the market by the winner

of the race. We demonstrate that, under specific conditions, dosed espionage might be

beneficial for society. It generally happens when the technological edge awarded at the

initial stage is too large, which decreases competitive incentives at the second development
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stage. In turn, diminished efforts at the development stage decrease the overall quality of

an end-user product. Thus, industrial cyberespionage might counter the inefficient (from

a market perspective) technological edge, motivate competition, and foster higher quality

products. It also means that by choosing an optimal value of technological edge (e.g.

by setting an optimal duration of patent protection), policymakers can make industrial

cyberespionage obsolete while encouraging competition.

The paper is built as follows. This section provides an introduction and a review of

related literature. Section 2 formalises the model and provides the results. The social

welfare analysis is presented in 3. Section 4 concludes. For those interested in computing

equilibria and related proofs, see Appendix A.1. The derivation of the Social Welfare

Function and related proofs can be found in Appendix A.2.

1.1 Related literature

This paper contributes to a rich strand of literature about industrial espionage in R&D

races. The early works by Matsui (1989) and Solan and Yariv (2004) could be attributed

to information economics as the espionage mechanism was modelled as a tool which

ex-ante uninformed players could use to obtain information about the actions of their

opponents. Matsui (1989) studied a two-person repeated game where espionage happened

with some exogenously set probability and provided players with an opportunity to learn

about their opponents’ actions. It was demonstrated that dosed espionage could lead to a

Pareto-efficient subgame perfect equilibrium in which both players increase their payoffs.

Solan and Yariv (2004) modelled strategic espionage in a sequential non-zero-sum game

and demonstrated that a firm is incentivised to conduct espionage only if its rival has

a first-mover advantage. Even though we use a very different espionage mechanism, the
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findings of those papers are echoed in the presented framework. Similarly to Matsui

(1989), we find that espionage can work as a payoff-increasing collusion device. The

assumptions behind the espionage mechanism in our framework absorbed the findings

of Solan and Yariv (2004)—in our model, espionage incentives arise when one of the

companies is sufficiently behind in the innovative process.

More recent work presented by Barrachina et al. (2014) studied the effects of espionage

on market entry deterrence. They studied an asymmetric two-player game in which a

monopoly incumbent may choose to extend its capacity in order to deter the entrance of

a potential entrant. The entrant is unaware of the incumbent’s choice. However, he can

choose to use “The Intelligence System”—a device that provides a noisy signal about the

incumbent’s actions. Similarly to Matsui (1989), they found that espionage makes the

market more competitive and leads to higher payoffs, which could also be observed in our

framework under certain circumstances.

Another popular way of modelling espionage was initially presented by Whitney and

Gaisford (1996, 1999). The authors utilised a modified Cournot game in which espionage

could decrease the marginal cost of a firm by providing access to a better production

technology retrieved from the competitor. They primarily focused on the influence of

espionage on social welfare. It was argued that espionage could be considered as a tech-

nology transfer, which inevitably leads to increased competitive incentives, higher payoffs,

and higher social welfare. Our framework similarly depicts espionage, allowing companies

to steal technologies from each other.

Unlike the papers mentioned above, we study espionage in a dynamic setting. In our

model, the espionage decision is made in the middle of the race and only if one of the ex-

ante identical companies has achieved superior technology. This allows for a more flexible
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model that distinguishes the effects of espionage on innovative incentives in a race for a

technological edge and competitive incentives in a race for a market share. Additionally,

our approach reveals that, depending on its power, espionage can influence social welfare

both positively and negatively.

Billand et al. (2012) and Chen (2016) have also studied espionage in modified Cournot

settings. Billand et al. (2012) studied an oligopolistic competition with espionage in a

multi-market setting. Espionage was modelled as an exogenous boost that companies

attain if they choose to spy on their competitors. The magnitude of a boost did not

depend on the effort levels of the opponents and simply increased in the number of

compromised rivals. This framework did not allow for the investigation of the relationship

between espionage and competitive incentives but, similarly to Whitney and Gaisford

(1996, 1999), demonstrated that spying is beneficial for social welfare. Similarly to Solan

and Yariv (2004) and to our framework, Chen (2016) assumed that espionage incentives

arise from relative differences in opponents’ technological levels. In Chen’s framework, one

of the companies was assumed to possess a more sophisticated technology and be capable

of producing products at a lower marginal cost. They demonstrated that espionage

reduces rivals’ competitive incentives, which contradicts the findings of our study. This

difference arises from a static setting of the model. By allowing for the endogenous

technological edge award mechanism, we demonstrate that the influence of espionage is

ambiguous: it decreases innovative incentives in the initial race for better technology and

increases the incentives in the following stage where the technologies are implemented in

a final product.

Send (2022) also considered a one-shot R&D race with espionage in which one of the

companies is assumed to be more technologically advanced. The author, however, drew
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ideas from a contest theory and employed a modified version of a Tullock contest (Tullock,

2001). Similarly to Chen (2016), a more advanced company is assumed to have a smaller

marginal cost of innovative efforts. Espionage was modelled as a device which copies the

opponent’s research effort and adds it to the company’s own. The authors found that the

disadvantaged player is more likely to win the race if espionage is possible. It was also

demonstrated that espionage strictly decreases overall R&D investment and the leading

company’s expected payoff. On the contrary, our model demonstrates that espionage’s

influence on overall efforts and payoffs is ambiguous. The difference can be once more

attributed to the static nature of Send’s model. This model can be considered a variation

of the second stage of the R&D race presented in the paper and does not capture our

main results.

As mentioned before, this study builds on the ideas of tournament theory originally

introduced in seminal articles by Lazear and Rosen (1981) and Nalebuff and Stiglitz

(1983). The original papers studied wage differentiation based on relative performance

differences between employees with a framework widely recognised as a rank-order tour-

nament. They analysed optimal prize (wage) structure in a static setting to find methods

to increase employees’ competitive incentives and productivity. Since then, their model

has found numerous applications in various fields unrelated to personnel economics. The

random element of the original rank-order tournament makes it a good fit to model an

innovation process. Additionally, we modify an originally static setting into a dynamic

one. The dynamic structure of the framework is essential for the investigation as incen-

tives behind cyberespionage attacks arise when competitors find themselves in uneven

positions in the middle of the R&D race.

Several other papers studied dynamics in tournaments. Denter and Sisak (2015, 2016)
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and Siegel (2014) have analysed head starts in multi-stage contests under symmetric and

asymmetric assumptions. In their papers, the authors discovered that awarding a small

head start to one of the players whenever they interact over multiple stages is optimal,

even in the case of symmetric players. This research contributes to the literature by

introducing an endogenous award mechanism, which allows players to obtain a head

start by performing a cyberespionage attack.

There were a small number of papers in tournament theory which focused on cheating

in contests—a phenomenon which resembles cyberespionage. Berentsen and Lengwiler

(2005) in their article on fraudulent accounting and doping in sports utilised a modified

rank-order tournament model in which they implemented a cheating mechanism—the

doping game. They investigated the evolutionary heterogeneous players’ framework where

contestants can improve their performance by using performance-enhancing drugs. They

described cases where high-ability contestants are more likely to cheat than low-ability

ones. The players could boost their performance by adding an exogenously defined vari-

able to their effort levels. However, the model assumes ex-ante heterogeneous players and

does not account for uncertainty in a race: the “doped” player wins over any clean player

with certainty. Moreover, the cheating mechanism in the framework does not depend

on the opponent’s performance—any player can boost her effort levels regardless of how

successful the opponent is. This makes the model unsuitable for studying cyberespionage

in R&D races.

The doping game was also studied by Kräkel (2007). The author analysed the dynam-

ics of two asymmetric players in the tournament with cheating. The paper discovered

three determinants of a player’s cheating decision: the likelihood effect (cheating in-

creases the winning probability), the cost effect (cheating influences the effort costs) and
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the windfall-profit or base wages effect (the decrease in base salary due to the possibility

of getting caught). However, the cheating mechanism broadly remained similar to the

predecessors.

Rather than study cheating, Curry and Mongrain (2000) focused on ways to prevent it.

They demonstrated that prize structure plays a crucial role in determining incentives for

cheating. It is possible to decrease cheating solely by setting up a correct prize structure

instead of investing in sophisticated monitoring systems. Unlike the model presented in

the paper, they assumed that both effort and cheating decisions are simultaneous, which

might not be the case in many real-life situations (e.g. R&D).

The series of papers on cheating, enforcement and audit in contests by Stowe and

Gilpatric (2010) and Gilpatric (2011) is closely related to our research as well. In the

2010 paper, the authors analysed the incentives behind prohibited behaviour in rank-

order tournaments while the base effort was considered as given. Their framework should

be considered the final stage of the tournament, where effort levels are already known,

and the players only make a dichotomous choice on whether to cheat or not. The latter

paper described how the prize structure, uncertainty, monitoring efficiency, number of

contestants, and associated penalty impact cheating. They found that greater enforce-

ment might harm players’ productivity, which partially echoes our results. However, due

to the limitations of a static framework, the authors did not capture the cases in which

cheating positively influences contestants’ effort levels.

Therefore, this study contributes to the literature by studying the dynamic interaction

between contestants, their relative effort levels and payoffs, and how they are affected by

the presence of espionage (or cheating). It investigates the influence of espionage on social

welfare by converting the relative outcomes of rank-order tournament into absolute ones,
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which, to our best knowledge, has not been done before.

2 The model of economic cyberespionage

Two players, firm 1 and firm 2, engage in an R&D race over two stages: the initial re-

search stage and the following development stage. Participating in the research stage

and the development stage, the companies invest xi and x̂i (where i = 1, 2), respectively,

which increases their chances of gaining a superior innovation by the end of the race. If

one of the companies pulls ahead after the research stage and achieves an advantage (a

technological edge), its opponent might choose to carry out a cyberespionage attack to

steal a fraction of the advantage and increase the chances of winning the race. During the

race, the competitors experience random shocks, which account for the uncertain nature

of R&D (Baker et al., 1986). In line with the classical framework of price competition

by Bertrand (1989), the company which delivers superior technology by the end of the

development stage remains the only one active on the market and collects all of the profits

to itself. Society benefits from the quality of the new technology delivered to the market

by the winner of the race. The social welfare function is formally defined in Section 3.

Figure 1 outlines the timings of the game.

Figure 1: Timings of the R&D race. Circles represent the timings for firms’ investment

decisions

Similar to Lazear and Rosen (1981), shocks (ϵi and ϵ̂i) are drawn from a known distri-
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bution with zero mean, infinite support, and variance 1
2
σ2. It is assumed that shocks are

independent and identically distributed (i.i.d.) across firms and stages. They represent

the luck of competitors and can influence the research either positively or negatively.

The shocks for the research and development stages are denoted ϵi and ϵ̂i, respectively.

Throughout the paper, we use the notations f(·) and F (·) to denote the probability den-

sity function (PDF) and the cumulative distribution function (CDF) of the difference

between two shocks.

A firm’s output of the research stage is expressed as the sum of investment and the

random shock:

qi = xi + ϵi. (1)

The structure of the research stage closely resembles the original model of Lazear

and Rosen (1981). However, it uses an alternative award mechanism to account for two

possibilities in an innovation race: concurrent failure and simultaneous invention, both

of which can be treated as a similar event from a relative standpoint (Lemley, 2011). A

company is said to be the winner of the research stage if it outperforms its opponents

by a substantial margin k, e.g. firm i wins in the research stage if qi − q−i > k. We call

variable k a technological step. Firm i is then awarded a technological edge h, which adds

on to the output of the development stage and provides an advantage over its opponent.

Conversely, if the output difference is not significant, qi − q−i < k, participants achieve

parity, and nobody gains a technological edge h. Note that technological step k and

technological edge h are assumed to be discrete. While one could argue that innovation

is a continuous phenomenon, innovation often happens in discrete steps. For instance,

microprocessor manufacturers compete to achieve a better fabrication process, which

enables smaller silicon transistors on a printed circuit board (PCB). The advancement of
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the process is measured in nanometers and usually happens in discrete steps (e.g. 14 nm,

10 nm, 7 nm). In turn, the advanced fabrication process allows for microprocessors with

more cores and threads—which are also discrete characteristics (Shrout, 2018).

The race then proceeds to the final stage of the R&D process—the development

stage. During this stage, the companies implement their innovations into end-user com-

mercial technologies. A company with a better end-user product wins the market, the

value of which is normalised to 1, w = 1.

The development stage depends on the outcome of the research phase. If neither of

the companies has gained a technological edge, the game follows a standard rank-order

tournament pattern. Each firm then produces a product of quality:

q̂i = x̂i + ϵ̂i. (2)

If one of the firms obtains a technological edge h, the underdog firm might choose to

carry out a cyberespionage attack to retrieve a fraction α ∈ [0, 1] of the opponent’s head

start at a fixed cost A and boost her chances of winning the race. This relatively simple

cyberattack mechanism captures the fact that the cyberattacks are mainly performed by

hired third-party hacking groups as companies rarely participate in the offensive opera-

tions themselves.

Without loss of generality, assume that firm 1 is the leader while firm 2 is the underdog.

Then their output levels are:

q̂a1 = x̂1 + ϵ̂1 + h, (3)

q̂a2 = x̂2 + ϵ̂2 + (αh), (4)

where αh = 0 if the underdog decides not to attack. The company that achieves a higher

output in the development stage wins the main prize.
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The R&D effort x (either xi or x̂i), is costly and is produced at cost c(x). The cost

function is assumed to be convex in x: c′(x) > 0 and c′′(x) > 0 for all x > 0. As the study

focuses on the process dynamics, sunk costs are omitted from the research: c(0) = 0. The

cost function’s convexity indicates that the marginal cost of the R&D effort increases, and

every additional investment unit becomes less efficient. For instance, the effectiveness of

the investment in developing a new matrix for a computer screen tends to zero as soon

as the pixels become indistinguishable to a human eye. Despite the convexity of the cost

function, competitors’ payoff functions do not need to be quasiconcave in investments.

We also impose the following assumption:

Assumption 1 The second derivative of the cost function is greater than the marginal

benefits for any x ∈ R:

max f ′(x) < min c′′(x).

The assumption guarantees that c′(·) crosses f(·) only once from below (see Figure

2), which ensures the existence of interior pure strategy equilibrium in every stage.

The overall payoffs of the game are equal to:

E[Πi] = P SP̂ s
i + PA

1 P̂
a
1 + PA

2

(
P̂ a
2 − (A)

)
− c(x̂i)− c(xi), (5)

where P S is the probability that neither of the companies has gained a technological edge

in the research stage and P̂ s
i is the probability of achieving a superior innovation in the

symmetric development stage from an even position; PA
1 is the probability of gaining a

technological edge in the research stage and P̂ a
1 is the probability of achieving a superior

innovation in the development stage from a leading position; PA
2 is the probability of

losing a technological edge to the opponent in the research stage and P̂ a
2 is the probability

of achieving a superior innovation in the development stage from an underdog position;
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A is a cost of cheating, which equals to 0 if the underdog decides not to engage in

cyberespionage. Note that cheating might only occur when the development stage of the

game is asymmetric and, therefore, incorporated in terms P̂ a
1 and P̂ a

2 .

The study uses the Subgame Perfect Nash Equilibrium (SPNE) as a solution concept

and assumes that each company rationalises against its opponent’s optimal investment

level, representing a firm’s inability to influence the market. The game is solved by

backward induction beginning at the development stage.

2.1 Development stage

Depending on the outcome of the research stage, there are three possible cases: (i)

symmetric case if nobody has a head start (technological edge) in the development stage,

HS = 0, (ii) asymmetric case with cyberespionage and the leader’s head start, HS =

h(1− α), and (iii) asymmetric case without cyberespionage and the leader’s head start,

HS = h.

2.1.1 Symmetric case, HS=0

In the symmetric case both companies have the same marginal incentives. Thus, their

behaviour should also be identical if Assumption 1 is satisfied. The firms’ expected payoff

functions are then:

Π̂s
i = P̂ s

i − c(x̂i), (6)
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where P̂ s
i is the probability of winning the game. It can be expressed as:

P̂ s
i = P (q̂i > q̂−i)

= P (x̂i − x̂−i > ϵ̂−i − ϵ̂i)

= P (x̂i − x̂−i > ζ̂)

= F (x̂i − x̂−i),

(7)

where ζ̂ = ϵ̂−i − ϵ̂i is the convolution of two random variables. As shocks are i.i.d.,

E(ζ̂) = 0 and E(ζ̂2) = σ2. Substituting (7) into (6) yields:

Π̂s
i = F (x̂i − x̂−i)− c(x̂i). (8)

Each player then chooses x̂i to maximise (8), taking its opponent’s strategy as given.

Given that Assumption 1 holds and that the objective function is twice differentiable,

maximisation requires:

∂Π̂s
i

∂x̂i
= f(x̂i − x̂−i)− c′(x̂i) = 0, (9)

∂2Π̂s
i

∂x̂2i
= f ′(x̂i − x̂−i)− c′′(x̂i) < 0, (10)

where (9) is the set of first-order conditions (FOCs) and (10) is the set of second-order

conditions (SOCs).

We find that if the solution exists, both firms choose identical investment strategies.

The result should be intuitive, considering the symmetry of marginal incentives of firms.

Note that the marginal increase in the probability of winning the market by a firm is

precisely the density of the uncertainty shock evaluated at the relative investment level.

Since participants also have the same well-behaved cost functions, their marginal costs

are also identical. Consequently, given any prior distribution F (·), firms have identi-

cal marginal incentives and choose the same strategies. Thus, the equilibrium must be

symmetric. This finding is summarised in the proposition below.
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Lemma 1 The equilibrium of the symmetric case of the development stage exists and is

unique if Assumption 1 is satisfied. In the equilibrium of the subgame, both companies

choose identical investments:

x̂si = c′−1 [f(0)] . (11)

Proof of Lemma 1. See Appendix A.1. ■

The intersection of marginal benefits f(·) and marginal costs c′(·) might not be unique.

In Figure 2, graph (a) demonstrates a case of the unique intersection, while graph (b)

shows a case where the intersection is not unique.

f(x is-x-is ) c'(x is )
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x i
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0.0 0.5 1.0 1.5 2.0 2.5 3.0
x i
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0.8

1.0

x
s

(b)

Figure 2: The uniqueness of Nash equilibrium depending on the slopes of PDF and cost

functions.

Assumption 1 ensures that marginal costs intersect with marginal benefits only once

“from below”, as illustrated in Figure 2 (a). It rules out the possibility of multiple

intersections, as shown in Figure 2 (b), and guarantees that the solution for the system
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of the FOCs is indeed an equilibrium.

Substituting optimal investment levels (11) into (8) returns the equilibrium payoffs

for the symmetric case of the stage:

Π̂S
i =

1

2
− c

[
c′−1 [f(0)]

]
. (12)

It is clear that if neither of the companies gains a technological advantage in the

research stage, the winner is decided by a coin toss. Thus, in equilibrium, the develop-

ment stage has zero influence on the expected winner of the race: both choose the same

strategies, have the same marginal incentives, and zero net effect.

2.1.2 Asymmetric case involving cyberespionage, HS=h(1-ααα)

If one of the competitors gains a technological edge in the research stage, the contenders

continue the race from uneven positions. Without loss of generality, we assume that firm 1

is the leader who has gained the technological edge h in the previous stage. Then, firm 2 is

the underdog and may choose to carry out a cyberespionage attack and retrieve a portion

α of the competitor’s head start if the attack costs A are sufficiently small. Assuming

sufficiently small attack costs, the firms produce innovative products of qualities q̂a1 and

q̂a2 respectively:

q̂a1 = x̂1 + ϵ̂1 + h,

q̂a2 = x̂2 + ϵ̂2 + αh.

The firms’ payoffs for the asymmetric case are then:

Π̂a
1 = P̂ a

1 − c(x̂1),

Π̂a
2 = P̂ a

2 − c(x̂2)− A, (13)
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where A is the cyberattack costs and P̂ a
i are the probabilities of winning the stage. The

leader then wins with the probability:

P̂ a
1 = P (q̂1 > q̂2)

= P (x̂1 − x̂2 + h− αh > ϵ̂1 − ϵ̂2)

= P
(
∆x̂+ h(1− α) > ζ̂

)
= F (∆x̂+ h(1− α)) ,

(14)

while the underdog wins with the probability:

P̂ a
2 = 1− P̂ a

1

= 1− F (∆x̂+ h(1− α)) .

(15)

Substituting equations (14) and (15) into payoffs (13) yields:

Π̂a
1 = F (∆x̂+ h(1− α))− c(x̂1),

Π̂a
2 = 1− F (∆x̂+ h(1− α))− c(x̂2)− A. (16)

The firms then maximise their expected payoffs by choosing optimal investment levels

x̂ai , which must satisfy the following FOCs:

∂Π̂a
1

∂x̂1
= f (∆x̂+ h(1− α))− c′(x̂1) = 0,

∂Π̂a
2

∂x̂2
= f (∆x̂+ h(1− α))− c′(x̂2) = 0, (17)

and SOCs:

∂2Π̂a
1

∂x̂21
= f ′ (∆x̂+ h(1− α))− c′′(x̂1) < 0,

∂2Π̂a
2

∂x̂22
= −f ′ (∆x̂+ h(1− α))− c′′(x̂2) < 0. (18)

Even though the firms’ profit functions are now asymmetric, marginal incentives are

still identical. The marginal increase in the probability of winning the game is the density
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function evaluated at the relative investment level, which is influenced by technological

edge h and espionage attack power α. Given that the shock is drawn out of a distribution

symmetric around zero, marginal benefits are precisely the same. The cost functions are

symmetric by assumption. Therefore, it must be the case that both firms again choose

identical investments. The finding is summarised below.

Lemma 2 The equilibrium of the asymmetric case of the development stage involving

cyberespionage exists and is unique if Assumption 1 is satisfied. In the equilibrium of the

subgame, both companies choose identical investments:

x̂ai = c′−1 [f (h(1− α))] . (19)

Proof of Lemma 2. See Appendix A.1. ■

Substituting optimal investment levels (19) into (16) yields equilibrium payoff levels:

Π̂A
1 = F (h(1− α))− c

[
c′−1 [f (h(1− α))]

]
,

Π̂A
2 = 1− F (h(1− α))− c

[
c′−1 [f (h(1− α))]

]
− A. (20)

In the asymmetric case of the race, the leader has more chances to win the market

due to the technological edge, while the underdog might balance the game by cyberattack

means. The underdog’s binary decision about espionage is investigated in the subsection

below.

It also follows from (11) and (19) that companies are exerting less effort in the asym-

metric case than in the symmetric one. Thus, uncertainty encourages R&D companies

to invest more.
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2.1.3 Asymmetric case not involving cyberespionage, HS=h

It is straightforward to obtain the equilibrium payoffs for the fair instance of the asym-

metric case (without cyberespionage). Substituting α = 0 and A = 0 to (17) yields a

solution to the game with no espionage:

x̂fi = c′−1 [f(h)] . (21)

Proposition 1 The equilibrium investments in the asymmetric case with cyberespionage

are higher than those in the asymmetric case without cyberespionage.

Proposition 1 immediately follows from (19), (21) and the fact that ζ̂ has a single-

picked distribution with zero mean and infinite support.

The intuition behind the proposition should be straightforward. When the gap be-

tween the leader and the underdog is too large after the research stage, it decreases

investment incentives for both of them: the leader does not need to invest a lot as she

is already far ahead, and the underdog is not motivated to invest in a surely lost game.

By diminishing the gap, cyberespionage encourages players to invest more and stimulates

competition.

Optimal payoffs for the asymmetric case without cyberespionage are:

Π̂F
1 = F (h)− c

[
c′−1 [f(h)]

]
,

Π̂F
2 = 1− F (h)− c

[
c′−1 [f(h)]

]
. (22)

The existence and uniqueness of the equilibrium are guaranteed if:

f ′(x̂i − x̂fi ) < c′′(x̂fi ),

which is always true by Assumption 1.
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2.1.4 Cyberespionage decision

It is evident that the underdog will choose to perform a cyberespionage attack only if:

Π̂A
2 > Π̂F

2 ,

or, alternatively, if:

A < F (h)− F (h(1− α)) + c
[
c′−1 [f(h)]

]
− c

[
c′−1 [f (h(1− α))]

]
= AT . (23)

The sign of the right-hand side (RHS) of the inequality above is always positive if

Assumption 1 is satisfied. It implies that the underdog always chooses to perform an

attack when it is sufficiently cheap. This finding is summarised in the proposition below.

Proposition 2 Cyberespionage decision threshold, AT , (23) is always positive if As-

sumption 1 is satisfied.

Proof of Proposition 2. See Appendix A.1. ■

Note that Proposition 2 may not hold if Assumption 1 is relaxed. This case is worth

investigating in future research as it might reveal scenarios in which the underdog chooses

not to perform an attack even if it is free. Following the result of Proposition 1, cyberes-

pionage may substantially increase the investments of the leader, which may decrease the

expected profits of the underdog even further. In this case, cyberespionage may not be

performed even if the underdog is paid for it.

From now on, we assume zero cyberattack costs. The assumption allows us to focus

on the particular case of the R&D race with industrial espionage and neglects the less

interesting case where cyberespionage never occurs in equilibrium (which is also formally

equivalent to the standard rank-order tournament). The assumption is summarised below

and imposed until the end of the paper.
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Assumption 2 The cheating is costless, A = 0.

2.2 Research stage

The study now has all the necessary ingredients to solve the research stage of the game.

Since both companies are assumed to start their research simultaneously without prior

knowledge, the stage is symmetric. It is said that the firm gains a technological edge h if

its output is at least k higher than the opponent’s:

qi − q−i > k,

or:

∆x+ ζ > k,

where ∆x = xi−x−i and ζ = ϵi− ϵ−i. There are three possible outcomes of the stage for

each player:

(1) neither firm gains a technological edge and the game continues symmetrically with

probability:

P S = P (−k < ∆x+ ζ < k)

= P (−∆x− k < ζ < −∆x+ k)

= F (−∆x+ k)− F (−∆x− k);

(2) firm i gains a technological edge and becomes the leader of the race, while firm −i

becomes the underdog with probability:

PA
1 = P (k < ∆x+ ζ)

= P (−ζ < ∆x− k)

= F (∆x− k);
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(3) firm i loses the technological edge to firm −i and continues the race as the underdog

with probability:

PA
2 = P (∆x+ ζ < −k)

= P (ζ < −∆x− k)

= F (−∆x− k).

The distribution of the new random variable ζ is symmetric around zero E(ζ) = 0 and

has a variance E(ζ2) = σ2 as shocks are assumed to be i.i.d.

Combining outcome possibilities with equilibrium payoffs (12), (20) yields the follow-

ing expected payoffs at the beginning of the initial stage:

Πi = P SΠS + PA
1 Π

A
1 + PA

2 Π
A
2 − c(xi)

= (F (−∆x+ k)− F (−∆x− k))Πs+

+ F (∆x− k)ΠA
1 + F (−∆x− k)ΠA

2 − c(xi).

(24)

The firms then choose the optimal investment levels x∗i , which, assuming differentia-

bility of the objective function, must satisfy two sets of conditions:

(1) FOCs:

∂Πi

∂xi
= f(∆x+ k)

(
ΠS − ΠA

2

)
+ f(∆x− k)

(
ΠA

1 − ΠS
)
− c′(xi) = 0 (25)

(2) and SOCs:

∂2Πi

∂x2i
= f ′(∆x+ k)

(
ΠS−ΠA

2

)
+

+f ′(∆x− k)
(
ΠA

1 − ΠS
)
− c′′(xi) < 0.

(26)

Thus, we demonstrate that the research stage of the game also has a unique symmetric

equilibrium. The intuition remains the same: marginal incentives are equal for both firms.

Proposition 3 summarises this claim.
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Proposition 3 The equilibrium of the research stage exists and is unique if Assumption

1 is satisfied. In the equilibrium the firms choose identical investments:

x∗i = c′−1 [f(k) (2F (h(1− α))− 1)] . (27)

Moreover, investments decrease in cyberespionage power
∂x∗i
∂α

< 0.

Proof of Proposition 3. See Appendix A.1. ■

The intuition behind the fact that the research stage investments decrease in cyberes-

pionage power is that the firms are unwilling to invest in the research, a large share

of which will be stolen. Therefore, cyberespionage diminishes competitive incentives in

the initial stage. The combination of the results of Propositions 1 and 3 implies that

cyberespionage has opposite effects on the investments in the research and development

stages.

It is now possible to write down the optimal expected payoff at the beginning of the

race. Substituting optimal effort levels (27) and payoffs of the latter stage into (26) and

simplifying yields:

Πi =
1

2
+ 2F (−k)

(
c
[
c′−1 [f(0)]

]
− c

[
c′−1 [f (h(1− α))]

])
−

− c
[
c′−1 [f(0)]

]
− c

[
c′−1 [f(k) (2F (h(1− α))− 1)]

]
. (28)

Thus, both players initially have the same chance to win the race. However, it is

unclear how cyberespionage attacks influence the firms’ expected payoffs and investment

levels. The following subsection investigates this matter.

2.2.1 Espionage externalities

The results suggest that cyberespionage power has opposite effects on the investment lev-

els in the research and the development stages. A policymaker can optimise the overall
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R&D race investments by influencing cyberespionage power α. It can be regulated by legal

instruments that impose obligations to businesses to implement cybersecurity measures

to protect their sensitive information. For instance, the EU has two primary regulative

documents that cover cybersecurity: General Data Protection Regulation (GDPR) and

Network and Information Security Regulations (DCMS, 2018; Van Alsenoy, 2019). Both

documents provide guidelines that aid companies in coping with common cyberattacks

and ensuring the security of private and sensitive information. It is relatively hard to

quantify the effects of the new cybersecurity law. Still, there is evidence that those laws

are beneficial. Cisco (2019) reports that GDPR compliant companies were 15% less likely

to have experienced a breach in the last 12 months, had 3 hours shorter average service

downtimes, and lost significantly less money to breaches. Moreover, $63 million in fines

were issued in the first year after the release of GDPR, which was insignificant com-

pared to overall losses due to cyberattacks. This supports Assumption 2 about negligible

cyberespionage costs (Sobers, 2018).

Therefore, by changing the severity of the cybersecurity landscape, policymakers can

regulate espionage power α and influence the competitive incentives in the R&D market.

Well-designed cybersecurity law may then be used as a balancing device that erodes

asymmetries and intensifies competition.

The research demonstrates that there exists a non-zero cyberespionage power αI ∈

(0, 1) that maximises the overall expected investments if the technological edge h is too

large. The result implies that “dosed” industrial espionage can promote competition by

balancing out the effects of espionage on investments in the research and development

stages. Proposition 4 summarises the results and Figure 3 illustrates them.

To allow for in-depth inference and simplify the notation, we assume the normality of
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shocks and impose a quadratic cost function.

Assumption 3 Shocks are Normally Distributed: ϵi,ϵ̂i ∼ N(0, 1
2
σ2) and cost function is

quadratic c(x) = x2

2
.

0.0 0.2 0.4 0.6 0.8 1.0
α

0.2

0.4

0.6

0.8

1.0
X

αI

Figure 3: Influence of attack power on the overall investment.

Proposition 4 There exists a technological edge h̄ such that overall effort is maximised

by

αI ≡ 1− 1

h

√
1

2π

σ

Φ(−k)
exp

(
− k2

2σ2

)
,

if h > h̄ and αI = 0 otherwise. Φ(·) is a CDF of normal distribution with zero mean and

standard deviation σ.

Proof of Proposition 4. See Appendix A.1. ■

We now demonstrate that effort-maximising espionage power, αI , (i) weakly increases

in technological edge h and (ii) decreases in k. The first relationship should be straightfor-

ward as the effort-maximising espionage power αI should increase in the distance between
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the actual h and h̄. It happens because if the awarded technological edge is too large,

it severely diminishes investment incentives in the development stage, as the underdog

has little chance of winning. In this case, cyberespionage allows the underdog to level

with the leader and continue the race. It balances out the depressing effect of the large

technological edge in the development stage. The second relationship is a consequence

of the first. A larger technological step k means a higher “price” that companies need

to pay to be awarded a technological edge h. It makes the companies more reluctant to

invest in the research stage and reduces the weight of the technological edge, driving αI

down. Those results are summarised below in Proposition 5.

Proposition 5 The effort-maximising espionage power aI increases in technological edge,

h, and decreases in technological step, k.

Proof of Proposition 5. See Appendix A.1. ■

The influence of cyberespionage power on a company’s expected payoff in the race

is not straightforward either. The research investigates the issue under three different

espionage regimes: (i) ultimate espionage power α∗ = 1, (ii) interim power with α∗ ∈

(0, 1), and (iii) absolute fairness with α = 0.

The ultimate espionage regime completely diminishes the importance of the initial

research stage. No firm would invest in the research stage, knowing that every single

bit of the developed innovation will be stolen. The whole competition is then decided in

the development stage of the game. We now demonstrate that such a high α can never

maximise a firm’s payoffs. The result is formalised below.

Lemma 3 Choosing the ultimate espionage power, α∗ = 1, is never optimal for payoff

maximisation.
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Proof of Lemma 3. See Appendix A.1. ■

In order to simplify further derivations, let H = (1−α)h. Proposition 6 demonstrates

that there always exists a unique optimal value of head start, H∗, that maximises the

firms’ expected payoffs. If the technological edge is too small, h ≤ H∗, the payoffs are

maximised under the regime of absolute fairness as there is no point in diminishing it

even further from its optimal value by choosing a positive cyberespionage power. This

finding echoes the known result from the competition theory that it is always optimal to

reward one of the contesters with a small head start to intensify competition (Denter &

Sisak, 2016). On the contrary, if the technological edge is sufficiently large, h > H∗, it

negatively influences the firms’ payoffs by diminishing the competition in the development

stage. Then choosing an interim espionage power regime (with α∗ ∈ (0, 1)) can reduce

the technological edge to the payoff-maximising value H∗. The results are illustrated by

Figure 4.

It follows that policymakers can influence firms’ decisions to enter the R&D race by

imposing stimulating cybersecurity laws. This would be especially interesting to consider

in an N-players setting, which will be considered in future research.

Observe also that cyberespionage might serve as a collusion device. It diminishes

the investment levels in the initial research stage, but does not influence the prize the

winner of the race receives. Therefore, under certain conditions, espionage can reduce the

competitive incentives of firms while increasing their expected payoffs at the beginning

of the game—imposing a self-policing cartel.

Proposition 6 Joint profit maximising espionage power is equal to 0, α∗ = 0, if tech-

nological edge is less or equal than optimal head start value, h ∈ (0, H∗], and obtains its

intermediate value α∗ ∈ (0, 1) if h ∈ (H∗,∞). Moreover, a∗ always exists regardless of h
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Figure 4: Influence of technological edge on firm’s payoff.

and k and is a global maximum.

Proof of Proposition 6. See Appendix A.1. ■

Depending on the size of payoff maximising H∗, k can influence α∗ either positively

or negatively. For instance, if H∗ is sufficiently small, then optimal espionage power

increases in the technological step, ∂α∗

∂k
> 0. The phenomenon occurs because the extra

investments needed to gain a technological edge surpass the added benefits, making the

symmetric case more appealing to the competitors.

If the optimal technological edge is already sufficiently large, the relationship becomes

complicated. However, it still follows a logical pattern: the α∗ increases in distance

between h and its optimal value H∗ and decreases otherwise. Proposition 7 formalises

the findings and provides more details.

Proposition 7 The technological step k has an ambiguous influence on payoff maximis-

ing cyberespionage power α∗. It does not influence the optimal attack level if h < H∗. If

h > H∗ then the sign depends on the values of k and H∗:

1. if H∗ is sufficiently small and q(H∗) ∈
(
0,

√
2√

eπσ2

)
then ∂α∗

∂k
> 0;
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2. if H∗ is sufficiently large and q(H∗) ∈
(
0,

√
2√

eπσ2

)
then (1) ∂α∗

∂k
< 0 if k ∈ (k∗1, k

∗
1),

(2) ∂α∗

∂k
> 0 for any k ∈ (0, k∗1) ∪ (k∗2,∞),

where q(H) = f ′(H)
1−2F (H)

.

Proof of Proposition 7. See Appendix A.1. ■

There may also exist an optimal value of the technological step k∗, which maximises

the firm’s expected payoff. The presented framework can be adopted to study cyberes-

pionage in relation to the patent regimes, with h being interpreted as the patent length

and k as the patent breadth (or patentability threshold)—the dimensions of a patent

identified by Scotchmer (2004). We will pursue this line of logic in future research.

3 Social welfare

The research adopts the expected quality (output) function to measure the social benefits

of the race. We assume that society benefits from the quality of innovation delivered to

the market by the winner of the R&D race and loses the cumulative costs that both

companies incurred in the R&D race (which could be spent on something else otherwise).

While the model measures the performance of the companies in relative terms, abso-

lute investments and quality of the end-product may be crucial from a social perspective.

For instance, it is arguably of minor importance for a car manufacturer to reduce the

gasoline its vehicles consume, as far as the car of its competitor uses more. However, any

additional economised litre of gasoline matters for the environment and influences social

welfare.

The social welfare function (SWF) is then expressed as expected output of the winner

of the race accounting for all exogenous shocks that might happen during the R&D race
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subtracting expected overall costs of both competitors:

W = Xi + ES + EL + EU − C, (29)

where Xi is the overall effort exerted by the winner of the race, ES is a contribution of

symmetric case shocks to the output of the game, EL is a contribution of asymmetric

case shocks when a leader wins the race, EU is a contribution of asymmetric case shocks

when an underdog wins the race, and C is the overall expected costs of the R&D race.

See Appendix A.2 for a complete SWF derivation.

Note that technological edge h influences the SWF (29) only indirectly through the

overall expected effort exerted by the winner of the race. It is not, however, present

in the function as a separate term. The technological edge is a measure of the relative

advantage of one firm over another. Given that society is interested in the absolute quality

of innovation, the inclusion of the technological edge into the function is unnecessary.

3.1 Espionage and welfare

Now we focus on the relationship between the end-product quality and cyberespionage

power. The function (29) then can be simplified by excluding terms that are not functions

of α.

Let,

g(k) =

∫ ∞

−∞

∫ ∞

ϵ−i+k

ϵif(ϵi)f(ϵ−i)dϵidϵ−i

= −
∫ ∞

−∞

∫ ϵi−k

−∞
ϵ−if(ϵ−i)f(ϵi)dϵ−idϵi > 0,

and

i(H) =

∫ ∞

−∞

∫ ∞

ϵ̂2−H
ϵ̂1f(ϵ̂1)f(ϵ̂2)dϵ̂1dϵ̂2

=

∫ ∞

−∞

∫ ∞

ϵ̂1+H

ϵ̂2f(ϵ̂2)f(ϵ̂1)dϵ̂2dϵ̂1 > 0.
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It is then sufficient to study the properties of the following function:

ψ = F (H)
(
2g(k) + f(k)+F (−H)f(k)2

)
+

+ F (−k)
(
2i(H) + f(H)− f(H)2

)
.

(30)

The study now demonstrates that the welfare-maximising value of cyberespionage

power, αW , depends on the size of the technological edge: αW ∈ (0, 1) if the technological

edge is sufficiently large and αW = 0 if it is sufficiently small. The finding is summarised

in a subsequent proposition.

Proposition 8 Social welfare maximising espionage power is equal to αW = 0, if tech-

nological edge is less or equal to the socially optimal head start value, h ∈ (0, HW ], and

attains its intermediate value αW ∈ (0, 1) if h ∈ (HW ,∞).

Proof of Proposition 8. See Appendix A.2.2. ■

The result of Proposition 8 echoes the results about effort and payoff maximisation

derived in the previous section. The regime of absolute fairness (α = 0) can benefit social

welfare only if the technological edge is sufficiently low h ≤ HW . However, it achieves

the opposite result if the technological edge is sufficiently large. In this case, choosing

an interminable espionage power regime (αW ∈ (0, 1)) leads to higher social welfare. As

with payoff maximisation, choosing the regime of absolute espionage power (α = 1) is

never optimal as it completely deteriorates the investments in the initial research stage

leading to low-quality end-user products. The findings align with the empirical results

described by Busso and Galiani (2014).

Of course, increasing the power of cyberespionage in R&D competition if the techno-

logical edge is too big might not be an option for policymakers. Still, if we interpret a

technological edge (h) as a patent length—the dimension that policymakers can control—

the model yields some insights into patent law regulations. By choosing an optimal patent
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regime and IP laws (e.g. trade secret laws) for a specific R&D industry, policymakers

might maximise investment levels, firms’ payoffs, and, as a result, the quality of the

end-products while making cyberespionage worthless. Those ideas will be investigated in

more detail in future research.

4 Conclusion and discussion

In this paper, we explored the influence of industrial cyberespionage on the R&D incen-

tives, the R&D race outcome, and social welfare. The study finds that cyberespionage

power has an ambiguous effect on the R&D investments in the dynamic race. Espi-

onage diminishes the competitive incentives in the initial research stage while increasing

them in the development stage. Companies will be reluctant to invest in the research

if their technology will most likely be stolen. On the contrary, espionage can serve as

a balancing device in the development stage: by decreasing the gap between the leader

and the underdog, providing the latter with a fighting chance. Therefore, by regulating

the cyberespionage power via legal means, policymakers can maximise the overall R&D

investments in the race.

Additionally, cyberespionage can positively influence competitors’ payoffs. By choos-

ing an appropriate espionage regime, policymakers can make the R&D race more attrac-

tive to the participants and motivate competition. Moreover, cyberespionage can lead

to higher quality innovation and produce social benefits. The social welfare function is

defined as the absolute measure of the quality of the innovation delivered to the market

by a winner of the race. Thus, imposing an appropriate espionage regime can sufficiently

increase overall competitive incentives, positively influencing the expected quality of the

innovation.
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It is rather challenging to retrieve empirical evidence favouring the proposed theory

due to the secrecy of the industrial espionage phenomenon. It would require a detailed

data set that includes variables on individual companies’ R&D efforts (e.g. R&D ex-

penses, research human capital, base stock of knowledge), R&D profit breakdowns, and

the information on industrial espionage decisions, which is probably the most difficult to

obtain.

However, it might be possible to study the dynamics of social welfare function ex-

pressed in economic growth terms (e.g. TFP or GDP in per capita terms) and research

it against indices of industrial espionage. This would also require a data set containing

information on the flows of the stolen sensitive data, which is not currently available.

The study also identified three possible vectors for future research. Firstly, it is worth

exploring the link between the R&D process, innovation economics, and optimal patent

design. The technological step k might be alternatively interpreted as a patentability

threshold, and the technological edge h can be regarded as a function of patent length.

The framework then can be easily modified to study the optimal patent design in the

aggressive digital environments (Scotchmer, 2004).

Secondly, the framework can be extended by allowing firms to diversify investment

into various technologies during the research stage. The product design is rarely built on

a single technology and often incorporates multiple innovations that synergise together in

a unique design. Thus, the expansion can lead to insights about optimal research budget

allocation and strategic data organisation for enhanced cybersecurity.

Thirdly, the model can be extended with a more sophisticated cyberattack mechanism.

Instead of using exogenously defined attack power, one could use a more sophisticated

endogenously defined function that might capture the offensive and defensive efforts of
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participants or affiliation mechanisms, and social planners’ investments into industrial

espionage enforcement, in the fashion of Stowe and Gilpatric (2010).
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A Mathematical Appendix

A.1 Equilibrium derivation and analysis

Proof of Lemma 1. Assumption 1 and the fact that c′(·) is monotone guarantee the

existence of a unique pure strategy equilibrium. It is easy to observe that in pure strategy

equilibrium, it must be the case that x̂i = x̂−i as FOCs (9) are symmetric for both players.

Given that f(x̂i− x̂−i) is a symmetric function with zero mean, both companies then

choose:

x̂si = c′−1 [f(0)] .

SOCs (10) are always satisfied around x̂si as f
′(0) = 0 and c′(x̂i) > 0 for all x̂i > 0 by

Assumption 1.

Notice that corner solutions x̂i = 0 cannot be an equilibrium since the density func-

tions are assumed to have infinite support (are unbounded) and c′(0) = 0. ■

Proof of Lemma 2. The proof follows the same pattern as the proof for the symmetric

case of the stage. Assumption 1 and the monotonicity of a cost function guarantee a single

intersect from below of marginal benefits and marginal costs, so the equilibrium is unique.

It follows from the symmetry of the FOCs that both companies will choose the same levels

of investment:

x̂ai = c′−1 [f (h(1− α))] .
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Corner solutions x̂i = 0 cannot be an equilibrium since density functions are assumed

to have an infinite support (are unbounded) and c′(0) = 0.

Assumption 1 also guarantees that the set of SOCs is always satisfied:

f ′ (h(1− α)) < c′′(x̂ai ). (31)

■

Proof of Proposition 2. The sufficient condition for the proposition to be true is:

∂

∂x

(
F (x) + c

[
c′−1 [f(x)]

])
> 0, (32)

or:

−f(x) > f(x)f ′(x)

c′′ [c′−1 [f(x)]]
.

Simplifying yields:

c′′
[
c′−1 [f(x)]

]
> f ′(x), (33)

which is always true via Assumption 1. ■

Proof of Proposition 3. Observe that companies are identical at the beginning of

the race. Moreover, they have symmetric marginal benefits and identical monotone cost

functions. Thus, it must be the case that both companies choose identical equilibrium

strategies.

Substituting xi = x−i, (12), and (20) into (25) and simplifying yields:

x∗i = c′−1 [f(k) (2F (h(1− α))− 1)] .

In order to ensure the uniqueness of the equilibrium, it is sufficient to impose the following

set of second-order conditions, which guarantees the single intersect of marginal benefits
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and marginal costs:

f ′(xi − x∗i + k)
(
ΠS − ΠA

2

)
+ f ′(xi − x∗i − k)

(
ΠA

1 − ΠS
)
< c′′(xi). (34)

Inequality (34) is satisfied if:

max
xi

f ′(xi − x∗i + k)
(
ΠS − ΠA

2

)︸ ︷︷ ︸
t1

+f ′(xi − x∗i − k)
(
ΠA

1 − ΠS
)︸ ︷︷ ︸

t2

< min c′′(xi). (35)

Term t1 of inequality (35) is always positive given that condition (32) of Proposition

2 always holds under Assumption 1:

t1 = F (h(1− α)) + c
[
c′−1 [f (h(1− α))]

]
− 1

2
− c

[
c′−1 [f(0)]

]
> 0.

Term t2 of inequality (35) is always positive given the monotonicity of the cost function

and the fact that the random variable ζ has a single-peaked distribution with zero mean:

t2 = F (h(1− α))− c
[
c′−1 [f (h(1− α))]

]
− 1

2
+ c
[
c′−1 [f(0)]

]
> 0.

Observe now that inequality (35) always holds if:1

max f ′(·)
(
ΠA

1 − ΠA
2

)︸ ︷︷ ︸
ρ

< min c′′(xi), (36)

where ρ = 2F (h(1− α))− 1.

It is easy to spot that the maximum value that ρ can attain is 1. It follows that (36)

always holds whenever:

max f ′(·) < min c′′(xi), (37)

which is precisely the form of Assumption 1.

It immediately follows that SOCs are automatically satisfied under Assumption 1.

1At this step, we assumed that both f ′(xi−x∗
i +k) and f ′(xi−x∗

i −k) attain their maximum possible

values – max f ′(xi − x∗
i + k) = max f ′(xi − x∗

i − k) = f ′(·).
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A corner solution (x∗i = 0) cannot be an equilibrium since the density functions are

assumed to have infinite support (are unbounded) and c′(0) = 0. It is easy to verify by

substituting xi = x−i = 0 into the FOCs.

It is also trivial to demonstrate that a firm’s investment in the research stage decrease

in an espionage power α:

∂x∗i
∂α

= −2hf(k)f (h(1− α)) (c′−1)′ [f(k) (2F (h(1− α))− 1)] < 0.

■

Proof of Proposition 4. The overall investments are defined as the sum of expected

investments in the research and the development stages:

X ≡ 2x∗i + 2P Sx̂si + 2PA
1 x̂

a
i + 2PA

2 x̂
a
i . (38)

Expanding the function and substituting ∆x = 0 yields:

X =
2

c
(f(k) (2F (h(1− α)) + A− 1)+

+ (F (k)− F (−k)) f(0) + 2F (−k)f (h(1− α)).

(39)

Taking the first derivative of (39) w.r.t. to α and setting it to zero yields:

∂X

∂α
=

2h

c

−f(k)f (h(1− α))︸ ︷︷ ︸
<0

−2F (−k)f ′ (h(1− α))︸ ︷︷ ︸
>0

 = 0. (40)

The derivative has an ambiguous sign. It is caused by the fact that espionage power

has an opposite effect on investment levels in different stages: an increase in α causes a

decrease in optimal investment level during the research stage and an increase during the

development stage.

Simplifying and rearranging (40) yields the following candidate solution:

αι = 1− 1

h

√
2

π

σ

η
exp

(
− k2

2σ2

)
, (41)
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where η = erfc
(

k√
2s

)
. The candidate solution is bounded from above; however, it does not

have a defined lower bond. Therefore, αι might take negative values, which contradicts

the initial assumption (that α ∈ [0, 1]). Thus, the interior solution indeed exists only for

sufficiently large h:

h >

√
2

π

σ

η
exp

(
− k2

2σ2

)
≡ h̄.

Otherwise, it is optimal to choose aι = 0 to maximise the overall investment. Verifying

the sign of the second-order condition around aι confirms that it is indeed a maximum

point:

∂2X

∂α2
= −

√
2

π

h2η

σ3
exp

(
−exp (k2/σ2)

πη2

)
< 0. (42)

The solution assuming normally distributed shocks can then be summarised as follows:
αI = αι, if h >

√
1
2π

σ
Φ(−k) exp

(
− k2

2σ2

)
,

αI = 0, otherwise,

where Φ is the CDF of the normal distribution with standard deviation σ and zero mean.

■

Proof of Proposition 5. Candidate solution (41) increases in h, however the influence

of innovation threshold k is not clear. Consider the following equation that was derived

from (40):

f(k)

F (−k)
=
f ′ (h(1− α))

f (h(1− α))
.

Taking the derivative of the left-hand side of the equation w.r.t. k yields:

∂

∂k

(
f(k)

F (−k)

)
=
f ′(k)F (−k) + f(k)2

F (−k)2
. (43)

I now make use of two facts:

f ′(k) = −kf(k),

43



and

λ(−k) = f(−k)
1− F (k)

∀k.

which could be immediately recognised as the inverse Mill’s ratio. Simplifying (43) yields:

λ(−k) (λ(−k)− k) > 0, (44)

which is positive for ∀k > 0 given that normal distribution is symmetric around zero and

the fact the inverse Mill’s ratio is the expectation of the truncated normal:

E[ζ|ζ > k] =
f(k)

1− F (k)
=
f(−k)
F (−k)

= λ(−k) > k.

Consider now the derivative of the right-hand side of equation (43) w.r.t. α:

∂

∂a

(
f ′ (h(1− α))

f (h(1− α))

)
= (α− 1)h < 0. (45)

Combining results (44) and (45) it is evident that there an inverse relationship between

innovation threshold k and optimal attack power ∂αI

∂k
< 0. ■

Proof of Lemma 3. Consider Υ that is a simplified version of Πi (28), which includes

only members that are the functions of α:

Υ ≡ −f (h(1− α))2 + κF (h(1− α))F (−h(1− a)) , (46)

where κ = 2f(k)2

F (−k) . Taking the first derivative and setting it to zero yields:

∂Πi

∂α
=
∂Υ

∂α
= hf (h(1− α)) (2f ′ (h(1− α)) + κ(1− 2F (−h(1− α))) = 0.

It is easy to spot that α = 1 is a candidate maximum point. It is now necessary to verify

a second-order condition:

∂2Υ

∂α2
= −h2f ′ (h(1− α)) (2f ′ (h(1− α)) + κ(1− 2F (−h(1− α)))+

+ hf (h(1− α)) (−2f ′′ (h(1− α))− 2κf (h(1− α))) < 0,
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which simplifies around α = 1 to :

∂2Υ

∂α2

∣∣∣∣∣
α=1

= 2hf(0) (−f ′′(0)− κf(0)) < 0. (47)

It must then be true that:

2f(k)2 > −f
′′(0)

f(0)
F (−k). (48)

Rearranging (48) yields:

2f(k)2 − f ′′(0)

f(0)
F (k) > −f

′′(0)

f(0)
. (49)

Given that −f ′′(0)
f(0)

= 1
σ2 inequality (49) becomes:

K ≡ 2σ2f(k)2 − F (k) > 1. (50)

Consider now the first derivative of K w.r.t. k:

∂K

∂k
= f(k)

(
4σ2f ′(k)− 1

)
, (51)

which is always negative for any k in R+. As k ≥ 0, it must be the case that K attains

its maximum at k = 0. Evaluating (50) at k = 0 yields:

f(0)2 >
1

4σ2
,

or

1

2πσ2
>

1

4σ2
,

which never holds. Therefore, α∗ = 1 is always a local minimum point. ■

Proof of Proposition 6. Consider Υ that is a simplified version of Πi (28), which

includes only terms that are the functions of α:

Υ ≡ −f (h(1− α))2 + κF (h(1− α))F (−h(1− a)) , (52)
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where κ = 2f(k)2

F (−k) . Substituting H = h(1− α) yields:

Υ = −f(H)2 + κF (H)F (−H). (53)

The first-order condition is then:

∂Υ

∂H
= f(H) (κF (−H)− κF (H)− 2f ′(H)) = 0, (54)

It is evident that H = 0 is a candidate solution for the FOC. However, it follows from

Lemma 3 that H = 0 is a point of local minimum. Observe now that:

∂Υ

∂H

∣∣∣
H→∞

= −κf(H)F (H) < 0. (55)

Combining equation (55) and results from Lemma 3 it should be evident that the function

Υ′(H) should intersect axis of abscissas at some point H∗ ∈ (0,∞). Moreover, the

dynamics of the function suggest that H∗ should be indeed the local maximum point.

Given that H is a linear combination of h and α it follows that:
α∗ = h−H∗

H∗ , if h > H∗,

α∗ = 0, if h ≤ H∗.

It is now sufficient to show that H∗ always exists. By rearranging (54), observe that the

FOC is satisfied whenever:

f ′(H)

1− 2F (H)︸ ︷︷ ︸
q(H)

=
κ

2
. (56)

It is easy to spot that function q(H) obtains its maximum at H = 0 as max f ′(H) =

f ′(0) = 0 and 1 − 2F (H) obtains its minimum positive value when H = 0. I now

demonstrate that this condition is always satisfied as

max
H

q(H) = q(0) =
1

σ2
> κ,∀H&∀k,
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which follows from Lemma 3. Consider also the sign of :

q′(H) = −
exp

(
−H2

σ2

)(
−2Hσ − exp

(
− H2

2σ2

)
(H2 − σ2) erf

(
H√
2σ

))
2πσ5 erf

(
H√
2

) . (57)

Simplifying (57) yields:

q′(H) ≡ −2Hσ − exp

(
−H2

2σ2

)(
H2 − σ2

)
erf

(
H√
2σ

)
< 0, (58)

which is always negative given that:

max
H

q(H) = lim
H→0

(
−2Hσ − exp

(
−H2

2σ2

)(
H2 − σ2

)
erf

(
− H√

2σ

))
= 0. (59)

Therefore, q′(H) < 0 and q(H) is a monotone strictly decreasing function of H. Given

that the right-hand side of (56) is a constant, there must be a unique value H∗ that

satisfies the equation, and H∗ must be a global maximum. ■

Proof of Proposition 7. Rearranging (56) yields:

Q ≡ F (−k)q(H)− f(k)2 = 0.

I now implicitly differentiate Q to obtain:

∂H∗

∂k
= −

∂Q
∂k

q′(H)F (−k)
. (60)

It follows from Proposition 6 that the denominator of the equation is negative. Therefore,

the sign of (60) depends solely on the sign of the numerator, which, however, is not

obvious. We consider it separately:

∂Q

∂k
= f(k) (−q(H)− 2f ′(k)) .

The sign of the equation above depends on the value of q(H). Consider two possibilities:

1. if H∗ is sufficiently small and q(H∗) ∈
( √

2√
eπσ2 ,

1
2σ2

)
then Q′(k) < 0;

47



2. if H∗ is sufficiently large and q(H∗) ∈
(
0,

√
2√

eπσ2

)
then given the shape of −2f ′(k) it

intersects q(H∗) twice at k1* and k∗2 with k
∗
1 < k∗2 . It then gives three intervals: (1)

Q′(k) < 0 for any k ∈ (0, k∗1), (2) Q
′(k) > 0 for any k ∈ (k∗1, k

∗
2), and (3) Q′(k) < 0

for any k ∈ (k∗2,∞).

As mentioned before, the sign of ∂H∗

∂k
follows the same pattern. It is now straightforward

to translate the result into espionage power terms. Observe that ∂H∗

∂k
= 0 if h < H∗.

Therefore, consider only the cases with h > H∗:

1. if H∗ is sufficiently small then ∂α∗

∂k
> 0;

2. if H∗ is sufficiently large then (1) ∂α∗

∂k
< 0 if k ∈ (k∗1, k

∗
1), (2)

∂α∗

∂k
> 0 for any

k ∈ (0, k∗1) ∪ (k∗2,∞).

■

A.2 Social welfare function derivation and analysis

A.2.1 Derivation of social welfare function

SWF is derived as an overall output exerted by the winner of the game minus the overall

expected costs exerted by both competitors during the game. Due to the complexity

of the function, the derivation is divided into five parts and then combined: (1) overall

effort exerted by the winner of the game, (2) contribution of the symmetric case shocks

to the overall expected shock, (3) contribution of asymmetric case shocks when a leader

wins, (4) contribution of asymmetric case shocks when an underdog wins, and (5) overall

expected costs.

1. Overall effort Both players have similar expected investment levels at the beginning

of the race. Moreover, the winner will choose the same level of investment as the loser.
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Expected investments of the winner are then expressed as:

Xi ≡ x∗i + P Sx̂si + PA
1 x̂

a
i + PA

2 x̂
a
i .

or expanding:

Xi = f(−k) (2F (H)− 1) + (F (k)− F (−k)) f(0) + 2F (−k)f(H). (61)

2. Contribution of symmetric case shocks The contribution of wining firm shocks

to the overall expected shock in case the winner is decided in the symmetric case of the

development stage is:

ES = P S (E(ϵi| − k < ϵi − ϵ−i < k) + E(ϵ̂i|ϵ̂i > ϵ̂−i)) =

= P S


∫∞
−∞

∫ ϵ−i+k

ϵ−i−k ϵif(ϵi)f(ϵ−i)dϵidϵ−i

F (k)− F (−k)︸ ︷︷ ︸
=0 for symmetric distributions

+2

∫ ∞

−∞

∫ ∞

ϵ̂−i

ϵ̂if(ϵ̂i)f(ϵ̂−i)dϵ̂idϵ̂−i

 .

Substituting P S = F (k)− F (−k) into the equation yields:

ES = 2 (F (k)− F (−k))
∫ ∞

−∞

∫ ∞

ϵ̂−i

ϵ̂if(ϵ̂i)f(ϵ̂−i)dϵ̂idϵ̂−i. (62)

Asymmetric case shocks contributions The asymmetric development stage occurs

with the probability PA = 2PA
1 = 2PA

2 . There are two sub-cases to consider in the

asymmetric development stage: (3) the leader wins, or (4) the underdog wins.

3. Leader wins Contribution of the asymmetric case shocks to the overall shock if an

underdog wins:

EL = PAP̂ a
1

(
E(ϵi|ϵi > ϵ−i + k) + E(ϵ̂1|ϵ̂1 > ϵ̂2 −H)

)
=

= PAP̂ a
1

(∫∞
−∞

∫∞
ϵ−i+k

ϵif(ϵi)f(ϵ−i)dϵidϵ−i

F (−k)
+

+

∫∞
−∞

∫∞
ϵ̂2−H ϵ̂1f(ϵ̂1)f(ϵ̂2)dϵ̂1dϵ̂2

F (H)

)
. (63)
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Substituting PA = 2F (−k) and P̂ a
1 = F (H) in (63) and simplifying yields:

EL = 2F (H)

∫ ∞

−∞

∫ ∞

ϵ−i+k

ϵif(ϵi)f(ϵ−i)dϵidϵ−i+

+2F (−k)
∫ ∞

−∞

∫ ∞

ϵ̂2−H
ϵ̂1f(ϵ̂1)f(ϵ̂2)dϵ̂1dϵ̂2.

(64)

4. Underdog wins Similarly, the contribution of shocks of underdog-winner of the

race to the overall expected shock is as follows:

EU = PAP̂ a
2 (E(ϵ−i|ϵ−i < ϵi − k) + E(ϵ̂2|ϵ̂2 > ϵ̂1 +H)) =

= PAP̂ a
2

(∫∞
−∞

∫ ϵi−k
−∞ ϵ−if(ϵ−i)f(ϵi)dϵ−idϵi

F (−k)
+

+

∫∞
−∞

∫∞
ϵ̂2+H

ϵ̂2f(ϵ̂2)f(ϵ̂1)dϵ̂2dϵ̂1

F (−H)

)
, (65)

where P̂ a
2 = 1 − P̂ a

1 = F (−H) is the probability an underdog wins in the asymmetric

development stage: Expanding (65) and simplifying yields:

EU = 2F (−H)

∫ ∞

−∞

∫ ϵi−k

−∞
ϵ−if(ϵ−i)f(ϵi)dϵ−idϵi+

2F (−k)
∫ ∞

−∞

∫ ∞

ϵ̂1+H

ϵ̂2f(ϵ̂2)f(ϵ̂1)dϵ̂2dϵ̂1.

(66)

5. Overall expected costs Overall expected costs of the R&D race can be expressed

as:

C ≡ c (x∗i ) + P Sc (x̂si ) + PA
1 c (x̂

a
i ) + PA

2 c (x̂
a
i ) . (67)
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A.2.2 Social Welfare Function

The expected quality social welfare function can the be derived by combining (61), (62),

(64), (66), and (67):

W =

= f(−k) (2F (H)− 1)− f(−k)2 (2F (H)− 1)2+

+ (F (k)− F (−k))
(
f(0)− f(0)2

)
+ 2F (−k)

(
f(H)− f(H)2

)
+ 2 (F (k)− F (−k))

∫ ∞

−∞

∫ ∞

ϵ̂−i

ϵ̂if(ϵ̂i)f(ϵ̂−i)dϵ̂idϵ̂−i+

+ 2F (H)

∫ ∞

−∞

∫ ∞

ϵ−i+k

ϵif(ϵi)f(ϵ−i)dϵidϵ−i+

+ 2F (−k)
∫ ∞

−∞

∫ ∞

ϵ̂2−H
ϵ̂1f(ϵ̂1)f(ϵ̂2)dϵ̂1dϵ̂2+

+ 2F (−H)

∫ ∞

−∞

∫ ϵi−k

−∞
ϵ−if(ϵ−i)f(ϵi)dϵ−idϵi+

+ 2F (−k)
∫ ∞

−∞

∫ ∞

ϵ̂1+H

ϵ̂2f(ϵ̂2)f(ϵ̂1)dϵ̂2dϵ̂1.

(68)

Proof of Proposition 8. It is sufficient to study the properties of the simplified func-

tion, which consist only of the members of SWF that are functions of attack power α:

ψ = F (H)
(
2g(k) + f(k)+F (−H)f(k)2

)
+

+ F (−k)
(
2i(H) + f(H)− f(H)2

) (69)

Consider the FOC of the function (69) w.r.t. H:

∂ψ

∂H
= f(H)

(
2 (g(k)− F (−k))f ′(H)) + f(−k)2 (1− 2F (H)) + f(−k)

)
+

+ F (−k) (2i′(H) + f ′(H)) = 0, (70)

Studying the FOC around H = 0 yields:

∂ψ

∂H

∣∣∣∣
H=0

= (f(−k) + 2g(k)) f(0) > 0.
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Therefore, the function is always positive around H = 0. Therefore, H = 0 is neither a

maximum nor a minimum point. It is also evident that:

∂ψ

∂H

∣∣∣∣
H→∞

= 0.

Now I consider the sign of the ∂ψ
∂H

as it approaches 0. Expanding FOC’s terms and

simplifying yields:

∂ψ

∂H
= exp

(
−H

2 + k2

σ2

)
exp

(
H2

2σ2

)(
κ1 − 2

√
2σ erf

(
H√
2σ

)
︸ ︷︷ ︸

Q1

+

+H
√
π erfc

(
k√
2σ

)
exp

(
k2

σ2

)(
4 exp

(
−H2

2σ2

)
− 2

√
2πσ − 2 exp

(
H2

4σ2

)√
πσ3

)
︸ ︷︷ ︸

Q2

, (71)

where:

κ1 = 4 exp

(
k2

2σ2

)√
πσ2

(
1 +

√
2 exp

(
k2

4σ2

))
.

The overall sign of the FOC is negative as Q1|H→∞ = 0+ and Q2|H→∞ = −∞:

∂ψ

∂H

∣∣∣∣
H→∞

< 0.

Therefore, given the function is smooth and continuous, there will always be a value of

HW between 0 and ∞ that maximises the social welfare function. Therefore, there exists

a value of aW = h−HW

h
that maximises the social welfare function for any h > HW . ■

52


