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Abstract

I build a model in which speculators unwind carry trades and hedgers fly to rela-

tively liquid U.S. Treasuries during global financial disasters. The net effect of these

flows produces an amplified U.S. dollar appreciation against high-yield currencies in

disasters and a dampened depreciation, or even an appreciation, against low-yield

ones. I verify this prediction by examining deviations from uncovered interest parity

(UIP) within a novel quantile-regression framework. In the tail quantiles, I show that

interest differentials predict high-yield currencies to suffer depreciations ten times

as large as suggested by UIP, while spikes in Treasury liquidity premia meaningfully

appreciate the dollar regardless of the U.S. relative interest rate. A complementary

analysis of speculators’ and hedgers’ currency futures positions substantiates my

model’s mechanism and highlights that hedging agents imbue the U.S. dollar with

its unique safe-haven status.
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1 Introduction

Beginning with Rietz (1988) and Barro (2006), models with rare disasters have been used to

explain a wide array of anomalies in macro-finance, including numerous exchange rate puzzles.

From this research have emerged two competing theories of exchange rates during global dis-

asters. The first is that the U.S. is special in the international system due the relative safety

of its assets, and so the U.S. dollar appreciates against all other currencies in crisis times (e.g.

Gourinchas, Rey, and Govillot, 2010; Maggiori, 2017). The second is that interest rate differ-

entials reflect countries’ relative exposure to disaster risk, and so high-interest-rate currencies

suffer large depreciations in disasters (e.g., Brunnermeier, Nagel, and Pedersen, 2009; Farhi

and Gabaix, 2016). Since the U.S. tends not to have the lowest interest rate among advanced

economies—e.g., relative to Japan, Switzerland and Germany—these two theories often make

divergent predictions for the U.S. dollar exchange rate during periods of global financial stress.

Moreover, recent models that feature safe dollar assets overlook the role of relative interest

rates, which obscures the extent and the source of the U.S. dollar’s safe-haven status.

In this paper, I unify the two competing theories by showing that exchange rate dynamics in

disasters reflect currency flows by two distinct types of financial agent: speculators and hedgers.

While speculators’ flows push high-yield currencies to depreciate in disasters—consistent with

the theory centered on relative interest rates—I uncover that it is hedging agents’ flight to

liquid U.S. dollar assets that is responsible for the dollar’s unique tendency to appreciate in dis-

asters. Together, these flows imply a significant asymmetry between the dollar’s exchange-rate

dynamics in disasters against high-interest-rate and low-interest-rate currencies. Using a novel

quantile-regression framework, I then estimate the explanatory power of interest differentials

and U.S. safe-asset demand for disaster-state exchange-rate movements. I find that while high-

interest-rate currencies are predicted to suffer depreciations ten times as large as suggested by

uncovered interest parity (UIP) in disasters, Treasury liquidity premia also play a quantita-

tively important role in explaining the dollar’s disaster-state exchange rate. Finally, applying

the quantile-regression approach to speculators’ and hedgers’ currency futures positions reveals

that their flows in disasters can indeed reconcile disaster-state exchange rate movements.

I begin by building a model that features two types of financial agent—speculators and

hedgers—and makes testable predictions for exchange rate dynamics during global financial

disasters. In normal times, as in Gabaix and Maggiori (2015), speculators intermediate capital

flows between the U.S. and the foreign country by performing the carry trade, i.e., by taking

long positions in the high-interest-rate country’s bond financed by shorting the low-interest-
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Figure 1: Time Series of Average 3-Month U.S. Treasury Liquidity Yield
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Note. Figure 1 reports the time series of annualized 3-month U.S. Treasury liquidity yields, measured as the
deviation from covered interest parity (CIP) from government bonds, as an average across G10 currencies
(AUD, CAD, CHF, EUR, GBP, JPY, NOK, NZD, SEK, relative to the USD) from 1998:M12 (when the
EUR series becomes available) until 2020:M12, using data from Du, Im, and Schreger, 2018a. Annotated in
red are major events surrounding the 6 largest episodes of elevated Treasury liquidity yields over this period.

rate country’s bond. Hedgers, on the other hand, earn a non-pecuniary liquidity yield from

hedging their exposure to risky foreign assets with the global reserve asset—the U.S. dollar

bond.1 Disasters are characterized by a severe disruption in funding markets (Brunnermeier

et al., 2009) and an increase in the perceived quality—liquidity and safety—of the reserve asset

(Jiang, Krishnamurthy, and Lustig (2021) and see Figure 1). As a result of the funding market

disruption, speculators are forced to deleverage in disasters by unwinding carry trades, which

pushes the high-interest-rate currency to suffer a large depreciation relative to the low-interest-

rate one. In addition, the spike in the liquidity of the reserve asset induces a flight to the

U.S. dollar bond by hedgers, which generates a unique tendency for the dollar to appreciate

in the disaster. In all, when the U.S. interest rate is relatively low, the unwinding of carry

trades by speculators and the flight to dollar liquidity by hedgers reinforce each other, leading

to an amplified appreciation of the dollar in disasters. Conversely, when the U.S. interest rate

is relatively high, the dollar experiences a dampened depreciation, or may even appreciate, in

a disaster, since portfolio adjustments by speculators and hedgers partially offset each other.

The relative magnitude of these two flows is an empirical question, which I tackle below.

1Speculators are typically large institutional investors such as commercial banks, investment banks, hedge
funds and pension funds. Hedgers are financial institutions who hedge currency mismatch on their balance
sheets.
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The model makes several testable predictions for exchange rate dynamics. First, due to the

possibility of a rare disaster, exchange rate dynamics are state-dependent. Second, high-interest-

rate currencies suffer depreciations in disasters that (a) are increasing in the size of the interest

rate differential and (b) may be larger than the interest rate differential, implying losses on the

carry trade for speculators. Third, spikes in the Treasury liquidity yield appreciate the dollar

in disasters, regardless of the U.S. relative interest rate. As a result, the dollar experiences an

amplified appreciation against high-yield currencies in disasters and a dampened depreciation, or

sometimes may even appreciate, against low-yield ones. Turning now to quantities, speculators

perform the carry trade in normal times and unwind carry trades in disasters, with both of

these proportional to the size of interest differentials. Further, hedgers’ flight to the dollar in

disasters is proportional to the rise in the U.S. Treasury liquidity yield. Finally, in normal

times, (a) high-yield currencies excessively appreciate relative to interest differentials and (b)

the dollar has a unique tendency to depreciate, both of which compensate speculators for their

exposure to disaster risk. This latter prediction can rationalize the puzzling size of the dollar’s

risk premium (Lustig, Roussanov, and Verdelhan, 2014).

The empirical strategy I use to evaluate these predictions rests on what I term the ‘signed

quantile UIP regression’, a novel approach to modelling tail exchange rate movements that is

crucial to properly assess dynamics in disasters. To start, the approach modifies the UIP re-

gression (Fama, 1984) to account for two key features of exchange rate dynamics in the data

that arise from speculators’ behavior in my model: (i) state-dependence (disasters versus nor-

mal times) and (ii) symmetry (between high- and low- interest-rate currencies). First, since

speculator carry trades in normal times imply mild exchange rate movements—which manifest

at the center of the exchange rate change distribution—while their carry trade unwindings in

disasters lead to extreme swings in exchange rates that manifest in the distribution’s tails, I

flexibly allow for state-dependence by estimating the UIP relationship using quantile regres-

sion. Second, since speculator behavior implies that high- (low-) interest-rate currencies mildly

appreciate (depreciate) in normal times but suffer large depreciations (appreciations) in dis-

asters, I account for this symmetry by interacting each term in the quantile UIP regression

with the sign of the interest differential. This interaction transposes exchange rate movements

about the vertical axis when interest differentials are negative (i.e., when the sign is −1) and

so groups together the depreciations of high-yield currencies and the appreciations of low-yield

currencies—which are two sides of the same coin in the context of speculator carry trading

in my model. Importantly, interacting the interest differential also with its sign ensures the

regression coefficients from the signed quantile UIP regression still estimate the marginal effect

of relative interest rates on exchange rate movements, as in the standard UIP regression, but
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at the quantiles of the conditional ‘signed’ distribution of exchange rate movements.

In particular, the left tail of the ‘signed’ distribution of exchange rate movements holds

the largest depreciations of high-yield currencies and the largest appreciations of low-yield cur-

rencies, that is, the exchange rate movements that, in my model, are driven by speculators’

unwinding of carry trades in disasters. Therefore, the conditional 1st percentile of this distri-

bution, which I term ‘speculator’s Foreign Exchange-at-Risk’ (FEaRS), serves as my baseline

measure of exchange rate movements in disasters. On the other hand, the right tail of this signed

distribution holds all large depreciations (appreciations) of low- (high-) yield currencies. As I

discuss in detail shortly, because hedgers’ flight to liquidity can push the dollar to appreciate

in disasters even when it has a relatively high interest rate, I refer to the 99th percentile of the

distribution as ‘hedger’s Foreign Exchange-at-Risk’ (FEaRH).2

I begin by estimating signed quantile UIP regressions using a sample of G-10 currencies

to assess the elasticity of exchange rate movements to interest rate differentials both inside

and outside of disaster periods. I find that while high-yield currencies are predicted to mildly

appreciate at the median, my empirical proxy for normal times, they suffer large depreciations

at the FEaRS, that is, in disasters. Specifically, I estimate that a 1 percentage point (pp)

wider interest differential between the U.S. and a second G-10 currency area predicts a 1 pp

greater appreciation of the high-yield currency conditional on no-disaster but a 10 pp larger

depreciation of the high-yield currency in disasters. The elasticities are similar for the other 9

currencies in my sample and imply mild profits in normal times and large losses in disasters for

speculators performing the carry trade.

Next, I build on the signed quantile UIP approach in two ways. First, I augment the

regression with the change in the U.S. Treasury liquidity yield, using data from Du, Im, and

Schreger (2018a). I show that a rise in the U.S. Treasury liquidity yield predicts a significant

appreciation of the dollar in both tails of the signed exchange rate change distribution, regardless

of the U.S.’s relative interest rate. Importantly, unlike for the interest differential, whose effects

hold across all currencies in my sample, this liquidity yield channel appears unique to the U.S.

dollar exchange rate. Quantitatively, I find that a 75 basis point rise in the Treasury liquidity

yield, which corresponds to the spike during the bursting of the “Dot-Com” bubble in 2000 (see

Figure 1), predicts a dollar appreciation of up to 3 percent.

The structure imposed by the signed quantile UIP approach helps interpret the net effect of

interest differentials and liquidity yields on exchange rates in each tail. When the U.S. interest

2Of course, the right-tail also holds large depreciations of low-yield currencies.
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rate is relatively low, spikes in the Treasury liquidity yield reinforce the interest-differential

channel, generating an amplified appreciation of the low-yield dollar in disasters. Thus, disaster

dynamics remain in the left-tail. On the other hand, when the U.S. interest rate is relatively

high, the two channels partially offset each other, leading to two cases. When the interest-

rate channel dominates, the high-yield dollar’s depreciation in disasters is dampened, but the

dynamics remain in the left tail. Conversely, when the liquidity-yield force dominates, the high-

yield dollar appreciates in the disaster, which pushes the disaster dynamics into the right tail.

Overall, this points to a fundamental asymmetry between the dollar’s exchange-rate dynamics

in disasters against high-interest-rate and low-interest-rate currencies.

Second, to test whether my model’s mechanisms underlie these exchange rate dynamics,

I use data on the currency futures positions of both speculators and hedgers trading on the

Chicago Board of Exchange to estimate signed quantile portfolio-flow regressions for each type

of financier.3 I first show that while speculators use currency futures to carry trade in normal

times, interest differentials predict large carry trade unwindings by speculators in disasters.

Next, I find that a rise in the liquidity yield on U.S. Treasuries induces hedgers to substantially

increase their holdings of U.S. dollars in disasters. In all, as they do in my model, portfolio

adjustments by speculators and hedgers seem to drive the disaster-state exchange rate dynamics

we see in the data. Furthermore, they suggest that hedgers imbue the U.S. dollar with its unique

safe-haven status.

Literature Review: My paper relates to theories of exchange rates with disaster risk, an

asset pricing framework in which deviations from UIP (see Hansen and Hodrick, 1980, Fama,

1984, Hassan and Mano, 2019 and Kalemli-Özcan and Varela, 2021) arise due to the risk of

extreme exchange rate movements in rare disasters. Farhi and Gabaix (2016) develop a model

in which countries’ differential exposures to exogenous productivity disasters, which determine

interest differentials in their setup, explain the magnitude of UIP deviations and rationalize other

exchange-rate puzzles.4 Relative to them, my paper investigates what drives these differential

exposures to disaster risk. Specifically, I show that both interest differentials and the liquidity

yield on U.S. Treasuries are needed to account for the dollar’s exchange rate dynamics in

disasters and that these dynamics arise due to endogenous portfolio adjustments by financiers.

A related literature studies in-sample currency crash risk and the properties of safe-haven

3The data come from the Commodity Futures Trading Commission, which sorts traders on the Chicago Board
of Exchange into those who use currency futures to hedge—hedgers—and those who do not—speculators.

4This echoes an earlier literature on “Peso Problems” (Krasker, 1980). See also Burnside, Eichenbaum,
Kleshchelski, and Rebelo (2011), who argue investors value returns much more in disasters, and Farhi, Fraiberger,
Gabaix, Ranciere, and Verdelhan (2009), who show over a third of the UIP premium is from disaster risk.
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currencies, defined as currencies that appreciate in times of (currency) market turmoil (e.g.

Menkhoff, Sarno, Schmeling, and Schrimpf, 2012).5 Brunnermeier et al. (2009) show that

higher interest differentials predict greater left-skewness of the within-month distribution of

carry trade returns and that increases in the VIX predict a fall in average carry trade returns and

an unwinding of speculator carry trades. However, as they look only at skewness, their method

cannot estimate the elasticity of exchange rate movements to interest differentials or other

factors, whereas my empirical framework can. Further, I uncover a second type of financier—

hedgers—whose flight to liquid U.S. dollar bonds in disasters is necessary to fully capture the

dollar’s disaster-state exchange rate dynamics.

The literature linking the U.S.’s comparative advantage in generating safe assets (Farhi and

Maggiori, 2018) with the dollar’s safe-haven status originates with Gourinchas et al. (2010).6

Maggiori (2017) then argues that this comparative advantage arises due to the greater risk-

bearing capacity of the U.S. financial sector. Until recently, this demand for U.S. safe assets

was difficult to quantify empirically in an international context, although Krishnamurthy and

Vissing-Jorgensen (2012) show investors value U.S. Treasuries for their safety and liquidity rel-

ative to other U.S. assets. The breakthrough comes with Du et al. (2018a) and Du, Tepper, and

Verdelhan (2018b), who document persistent CIP deviations pre- and post-crisis, highlighting

that U.S. Treasuries offer greater liquidity and safety compared to other countries’ government

bonds. While Jiang et al. (2021), Engel and Wu (2018), Valchev (2020) and Lloyd and Marin

(2020) show that increases in this U.S. Treasury liquidity yield predict instantaneous dollar ap-

preciations at the mean, my paper studies this relationship during global disasters and compares

its importance to that of relative interest rates. Further, consistent with my mechanism, Liao

and Zhang (2020) show that currency hedging can explain the dynamics of CIP deviations.

To discipline my empirical analysis, I build on the growing literature modelling exchange

rates dynamics in imperfect financial markets (Itskhoki and Mukhin, 2021).7 My model extends

the work of Gabaix and Maggiori (2015) and Jiang (2021) in two respects: (i) a formal modelling

of financial market disasters; and (ii) that hedgers value the dollar for its non-pecuniary liquidity

yield, which spikes in disasters. Relative to existing models, this framework nests theories

5See also important works by Ranaldo and Söderlind (2010), Habib and Stracca (2012), Cenedese, Sarno, and
Tsiakas (2014), Dobrynskaya (2014), Corsetti and Marin (2020) and Cesa-Bianchi and Eguren Martin (2021).

6Bernanke (2005), Gourinchas and Rey (2007) and Caballero, Farhi, and Gourinchas (2008) also argue the
U.S.’s role as the world’s safe-asset supplier explains its current account deficit. It may explain the extent of U.S.
monetary policy’s effect on capital flows and asset prices (Rey, 2015, Miranda-Agrippino and Rey, 2020) and why
the information effect of U.S. monetary policy appreciated the dollar in the GFC (Stavrakeva and Tang, 2019).

7See also Jeanne and Rose (2002), Evans and Lyons (2002), Pavlova and Rigobon (2007), Jiang, Krishna-
murthy, and Lustig (2020), Greenwood, Hanson, Stein, and Sunderam (2020), Koijen and Yogo (2020), Kekre
and Lenel (2021), Georgiadis, Müller, and Schumann (2021), Bianchi, Bigio, and Engel (2021), Gourinchas, Ray,
and Vayanos (2022), Devereux, Engel, and Wu (2023), Fukui, Nakamura, and Steinsson (2023).
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of exchange rate dynamics in disasters tied to both interest differentials and U.S. safe-asset

demand, making it the appropriate laboratory with which to draw testable predictions.

Finally, my empirical approach relates to Adrian, Boyarchenko, and Giannone (2019), who

use quantile regression (Koenker and Bassett Jr, 1978) to show deteriorating domestic financial

conditions predict greater downside GDP growth risk.8 Eguren-Martin and Sokol (2020) apply

this methodology to study the impact of tighter global financial conditions on the exchange

rate distribution by sorting currencies by interest differentials, international reserves and fiscal

deficits. Rather than conditioning on financial conditions, my empirical approach estimates

the direct effect of interest differentials (and liquidity yields) on exchange rate movements

as in the standard UIP regression of Fama (1984), but uses quantile regression to account

for state-dependence and a ‘sign’ interaction to account for symmetric movements for high-

versus low-yield currencies.9 In addition to studying tail exchange rate movements, I also

evaluate tail movements in the portfolio adjustments of speculators and hedgers to understand

the mechanisms underlying these results.

The remainder of this paper is organized as follows. Section 2 develops a model of exchange

rates with rare disaster. In section 3, I discuss the novel empirical strategy I use to evaluate

my model. Section 4 presents the empirical results and section 5 concludes.

2 Speculators, Hedgers and Exchange Rates in Disasters

In this section, I develop a model of exchange rate dynamics with rare disasters and two types

of global financier: speculators and hedgers. The setup builds on the models of Gabaix and

Maggiori (2015) and Jiang (2021) but, different to them, studies how portfolio adjustments by

speculators and hedgers jointly determine exchange rate dynamics during periods of stress in

global financial markets. Appendix A solves the model in full and Appendix B provides proofs.

2.1 Model Structure

The structure of international financial markets is displayed in Figure 2. There are two countries

each populated by a unit mass of identical households: the home country (H) is the U.S. and

the foreign country (F) is a second advanced economy. Stars (*) denote foreign variables.

8See also Lloyd, Manuel, and Panchev (2021) who link foreign financial conditions to downside risks to growth.
9In appendix F, I show there are challenges with interpreting the direction of the effects of global financial

conditions on exchange rate movements. This is an added reason I opt for my strategy.
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Figure 2: International Financial Market Structure

Note. Figure 2 displays the agents and international financial market structure of the model.

Households in each country are endowed with both tradable and non-tradable (NT) goods and

have access to a one-period risk-free bond. While trade in goods between countries is assumed

to be frictionless, financial markets are segmented such that U.S. households can trade only

the U.S. bond and foreign households can trade only the foreign bond. This form of market

segmentation provides the opportunity for global financiers to intermediate cross-border flows.

2.2 Two Types of Global Financier: Speculators and Hedgers

Exchange rate dynamics in the model depend on the behavior of two types of global financier.

The first type, currency speculators, are modelled as the financial intermediaries introduced by

Gabaix and Maggiori (2015). Specifically, speculators are born with zero net worth, exist for

one period, and can hold both U.S. and Foreign bonds. Their balance sheet in period t consists

of qt U.S. bonds and −qt/εt Foreign bonds, where εt denotes the real exchange rate, defined

such that an increase corresponds to a real appreciation of foreign currency against the U.S.

dollar (USD).10 If qt > 0, then speculators are long the U.S. bond and short the foreign bond.

Their expected profit in dollars from this currency trade is the scaled deviation from uncovered

interest parity (UIP):

V S
t = Et

[
β{Rt −R∗

t

εt+1

εt
}qt

]
, (1)

10Throughout, I sometimes use nominal terms (exchange rate, currency or dollar-denominated) while I have
in mind their real counterparts (real exchange rate, claim to the economy’s numeraire or valued in units of the
U.S. numeraire). The numeraire in each country is the non-tradable good.
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where Rt and R∗
t denote the real interest rate on U.S. and Foreign risk-free bonds, respectively,

and β is the U.S. household discount factor. As shown in Appendix A, households’ Euler

equations imply Rt = 1/β and R∗
t = 1/β∗.

Creditors (home or foreign households), who finance speculators’ currency investments,

rationally anticipate that speculators may abscond with Γt| qtεt | of their total portfolio position

| qtεt |. This agency friction gives rise to the following funding constraint for speculators:

V S
t

εt
≥

∣∣∣qt
εt

∣∣∣× Γt

∣∣∣qt
εt

∣∣∣ =⇒ V S
t ≥ Γt

(q2t
εt

)
, (2)

where Γt > 0. A higher Γt exacerbates frictions in funding market, and thereby tightens

speculators’ funding constraints. As speculators’ constraints bind, their optimal holding of U.S.

dollar bonds is given by:

qt =
1

Γt
Et

[
εt −

R∗

R
εt+1

]
, (3)

which highlights that speculators must decrease the size of their balance sheets (|qt| ↓) when

funding frictions tighten (Γt ↑) or when the expected return (UIP deviation) falls.

The second type of financial agent, hedgers, are modelled in a similar fashion to the risky-

asset financiers in Jiang (2021). In period t, hedgers are endowed with one unit of a risky asset

paying Et[X̃
∗
t+1] units of the foreign NT good in t + 1. In the period the asset is endowed, it

can be partially liquidated for X∗
t units of the NT good, which can then be used to purchase

U.S. bonds. Therefore, if a share (1− vt) of the period t endowment is liquidated, the expected

1-period pecuniary payoff in foreign currency terms is:

V H
t = (1− vt)X

∗
t Et[R

εt
εt+1

] + vtEt[X̃
∗
t+1]. (4)

In addition to valuing the pecuniary return on U.S. dollar bonds, I assume hedgers also

derive a non-pecuniary “liquidity yield” λt from hedging their holdings of foreign risky assets

with the reserve asset. This is modelled as a reserve constraint that requires hedgers to hold λt

times the expected value of the unliquidated portion of their risky asset in the USD bond:

wt

εt
≥ λt × vtEt[X̃

∗
t+1] (5)

where wt is the hedgers’ position in the USD bond and λt ≥ 0. A greater liquidity benefit

to holding U.S. dollar bonds, λt ↑, or a larger expected return on the foreign risky asset,
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Et[X̃
∗
t+1] ↑, tightens hedgers’ reserve constraint, and so induces hedgers to rebalance their

portfolios towards U.S. dollar bonds. This constraint captures the idea that the degree to

which hedgers “hedge” their exposure to foreign risky assets is tied to the quality of the reserve

asset—e.g., its safety, liquidity and convenience—as measured by the U.S. bond’s liquidity yield

(Di Tella, 2020). Assuming X∗
t Et[R

εt
εt+1

] < Et[X̃
∗
t+1], the constraint binds and hedgers optimal

USD bond holdings are:

wt

εt
=

λtEt[X̃
∗
t+1]

λtEt[X̃∗
t+1]/X

∗
t + 1

, (6)

which is increasing in the U.S. bond’s liquidity yield.

An important distinction between speculators and hedgers is that while hedgers’ portfolio

positions are tied to the liquidity yield on the world’s reserve asset, speculators’ portfolios are

determined by expected returns such that, to them, U.S. bonds are a priori no different from

foreign bonds. As a result, in what follows, predictions for exchange rate dynamics that arise

due to speculator behavior should hold for all currency pairs, whereas those arising from hedger

behavior should hold only for the dollar vis-à-vis other currencies.11

2.3 Disaster States, Financial Constraints and the Liquidity Yield

Central to my analysis is the possibility of a financial-market disaster, defined as a sudden

period of extreme illiquidity in speculators’ funding market.12 For ease of exposition, in what

follows, I assume there are three periods t ∈ {0, 1, 2}. In t = 0, Γ0 is fixed and low, meant to

capture calm non-disaster (ND) periods where funding liquidity is abundant and speculators are

able to take on lots of risk. In t = 1, however, Γ1 is stochastic and, with a small probability p,

it spikes, signifying a disaster (D) in speculators’ funding market that forces them to drastically

limit the risk on their balance sheets.13 This is summarized by the following process for Γt:

Γ0 = ΓL > 0 and Γ1 =

ΓL ND

ΓH >> ΓL D.
(7)

As I discuss in detail shortly, the parameters governing the likelihood and severity of disasters,

{p, ΓL, ΓH}, determine the extent of the exchange rate response to disaster shocks.

11Formally, in a model where the home country is not the U.S., hedgers do not derive a non-pecuniary benefit
from holding either bond, and so face no reserve constraint and do not hold bonds in either currency.

12This is the definition of a disaster used by Brunnermeier et al., 2009.
13I describe the final period t = 2 in the next section.
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In addition, consistent with models linking funding liquidity (Γt) to market liquidity (λt),

such as Brunnermeier and Pedersen (2009), the liquidity yield on U.S. bonds is assumed to be

an increasing function of funding illiquidity:

λt = λ(Γt) ≥ 0 and λ
′
(Γt) > 0 (8)

This maps the process for Γt in (7) to a similar one for the U.S. liquidity yield:

λ0 = λL ≥ 0 then λ1 =

λL ND

λH >> λL D
(9)

That is, the liquidity yield on U.S. bonds spikes in disasters, consistent with its dynamics in

Figure 1. While a deeper foundation for (8) is outside the scope of this paper, there are several

potential mechanisms underlying this assumption. For example, one can envision a set of global

arbitrageurs whose ability to arbitrage away non-pecuniary returns depends on their ability

to borrow in funding markets. As a result, when funding market conditions deteriorate in

disasters, they construct fewer arbitrage portfolios, which leads the liquidity yield to increase.

Alternatively, a more interesting rationale is that episodes of funding market illiquidity serve as

a signal that induces hedgers’ to fly to U.S. bonds in disasters, regardless of their return. This

may endogenously widen the liquidity yield on U.S. bonds.14

2.4 Equilibrium

Equilibrium in international financial markets is characterized by a condition that equates U.S.

net imports with U.S. net borrowing each period:

ιt − εtξt = qt + wt, (10)

where ιt and ξt denote U.S. imports denominated in dollars and foreign imports denominated

in foreign currency, respectively (see Appendix A for details).15 That is, when the U.S. is a net

importer, ιt > εtξt, market segmentation requires U.S. net borrowing to be intermediated by

14In the empirical sections to come, I measure the liquidity yield on U.S. Treasuries as the deviation from CIP.
By flying to dollars and hedging their positions with a swap back into foreign currency, hedgers may appreciate
the dollar in the spot market and depreciate it in the forward market, consistent with a widening of CIP. This
would be in-line with the findings of Liao and Zhang (2020).

15This equation assumes that financiers intermediate only new flows at t, with the repayment of stocks arising
from previous flows, that is, Rt(qt−1 + wt−1), held passively by households until the “long-run period”, which
I define momentarily. As emphasized by Gabaix and Maggiori (2015), this makes the algebra less cumbersome,
but does not alter the underlying economics. See Appendix A for the details.
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speculators or accommodated by hedgers, such that the financial sector is net long the USD:

qt +wt > 0. Condition (10) also pins down the equilibrium exchange rate for each t ∈ {0, 1, 2}:

εt =
ιt − qt − wt

ξt
=

ιt +
1
Γt

R∗

R Et[εt+1]

ξt +
1
Γt

+
λtEt[X̃∗

t+1]

λtEt[X̃∗
t+1]/X

∗
t +1

, (11)

where the exchange rate at t = 1, ε1, depends on the realization of the disaster shock Γ1, and

thus λ1(Γ1), while the exchange rate at t = 0, ε0, is influenced by disaster risk through E0[ε1].

Finally, to improve clarity, I assume that the final period is the “long-run” without financial

frictions so that trade is balanced at t = 2: ι2 = ε2ξ2. Thus, the exchange rate in the final

period is determined solely by fundamentals, i.e. countries’ relative import demand, which is

consistent with the empirical findings of Froot and Ramadorai (2005). As discussed in Gabaix

and Maggiori (2015), this anchors the exchange rate in the final period, but does not affect

exchange rate dynamics between the first two periods, which are the focus of my analysis.

2.5 Exchange Rates in Disaster States

To understand how exchange rates respond to funding market disasters, I first study the com-

parative statics of ε1 to changes in Γ1:

∂ε1
∂Γ1

=
1

A

[
ι1 −

R∗

R
E1(ι2)(1 +

λ1E1[X̃
∗
2 ]

λ1E1[X̃∗
2 ]/X

∗
1 + 1

)︸ ︷︷ ︸
Speculator Direct Effect through ∂Γ1

−Γ1
E1[X̃2]

B

∂λ1

∂Γ1
(Γ1ι1 +

R∗

R
E1(ι2))︸ ︷︷ ︸

Hedger Indirect effect through ∂λ1

]
(12)

where A =
(
Γ1 + 1 +

λ1E1[X̃∗
2 ]

λ1E1[X̃∗
2 ]/X

∗
1+1

)2
and B = (λ1E1[X̃

∗
2 ]/X

∗
1 + 1)2.16

Equation (12) decomposes the overall response of the exchange rate into a direct effect,

which captures the impact of the tightening of speculators’ funding constraints when hedgers’

constraints are fixed, and an indirect effect, which captures the impact of the tightening of

hedgers’ reserve constraints due to the spike in the U.S. Treasury liquidity yield.

First, the sign of the indirect effect is unambiguously negative such that Γ1 ↑ predicts ε1 ↓,

a USD appreciation. This is because a spike in Γ1 triggers a similar jump in the USD liquidity

16Since I allow ιt to move freely, I set ξt = 1 without loss of generality
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yield by (8), ∂λ1
∂Γ1

> 0, which induces a flight to the dollar by hedgers:17

∂w1/ε1
∂Γ1

=
∂λ1

∂Γ1

E1[X̃2]

B
> 0 (13)

Importantly, the size of this dollar flight, like the indirect effect, is increasing in ∂λ1
∂Γ1

such that

larger spikes in the liquidity yield predict a greater indirect appreciation of the dollar.

Conversely, the sign of the direct effect is ambiguous and depends on the relative magnitudes

of R∗ and R. This is because relative interest rates determine the composition of speculators’

balance sheets:

qt =
1

Γt
Et

[
εt −

R∗

R
εt+1

]
> 0 ⇐⇒ R > R∗Et[εt+1]

εt
(14)

Thus, speculators are long the USD bond and short the foreign currency bond (qt > 0) if and

only if the return on the U.S. bond is larger than the return on an uncovered position in the

foreign currency. Furthermore, as the expected return to a net-long position in the USD bond

grows, R−R∗ Et[εt+1]
εt

↑, so too do speculators’ USD bond holdings, qt ↑.

As relative interest rates determine speculators’ portfolio positions in “normal times”, they

also drive speculators’ portfolio adjustments in the disaster state:

∂q1
∂Γ1

=
1

Γ2
1

(R∗

R
E1(ε2)− ε1

)
+

1

Γ1

∂ε1
∂Γ1

(15)

Lemma 1: For a sufficiently small ∂λ1
∂Γ1

and sufficiently large Γ1, if q1 > 0 then ∂q1
∂Γ1

< 0 and if

q1 < 0 then ∂q1
∂Γ1

> 0. Also, |q1| ↑ =⇒ | ∂q1∂Γ1
| ↑.

Since speculators’ are net-long the dollar when U.S. interest rates are relatively high, R >

R∗ Et[εt+1]
εt

, Lemma 1 highlights that speculators’ decrease their holdings of the currency with the

relatively high interest rate as their constraints tighten in disasters. The extent of this portfolio

adjustment grows with the size speculators’ initial positions (which grows as |R−R∗ Et[εt+1]
εt

| ↑),

since larger positions imply more balance sheet risks that must be shed in a disaster.

Finally, as the direction of speculators’ flows in disasters depends on relative interest rates,

so does the “direct” exchange rate response:

Lemma 2: If R > R∗ E1[ε2]
ε1

, the sign of the direct effect is positive (Γ1 ↑ =⇒ ε1 ↑, a dollar

depreciation) and increasing in R − R∗ E1[ε2]
ε1

. If R < R∗ E1[ε2]
ε1

, the sign of the direct effect is

17Note also that the parameters ιt, Γt, B, R, R∗, E1(ι2) and Et[X̃t+1] are always greater than zero.
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negative (Γ1 ↑ =⇒ ε1 ↓, a dollar appreciation) and increasing in R∗ E1[ε2]
ε1

−R.

Reflecting the behavior of currency speculators, a shock to funding liquidity predicts a

direct depreciation of the dollar when the U.S. interest rate is relatively high but predicts a

direct dollar appreciation when the U.S. interest rate is relatively low.

2.6 Model Predictions

In this section, I outline my model’s two predictions for exchange rate dynamics in disasters,

which together form the paper’s main theoretical result. I also discuss two corollaries that

pertain to exchange rate dynamics in normal times. While proofs can be found in Appendix B,

I illustrate these predictions here with model-simulated exchange rate distributions.

Before proceeding, I amend (14) by assuming that speculators perform the carry trade

when intermediating flows across borders. That is, they take net-long positions in the high-

interest-rate currency: qt > 0 ⇐⇒ R > R∗. This can be easily parameterized in my model

since interest rates are determined by household discount factors.18

I begin by considering how speculators’ behavior shapes exchange rate dynamics in normal

times. Since speculators perform the carry trade, net-long positions in high-yield currencies

must offer positive expected returns. Ex-post, however, carry trades only earn positive returns

conditional on no-disaster in t = 1, that is, conditional on Γ1 = ΓL:

Corollary 1: Abstracting from hedgers, for a sufficiently small disaster probability p, we have

R∗
0 > R0 =⇒ E0

[
R∗

0

ε1
ε0

−R0

∣∣∣ Γ1 = ΓL

]
> 0 and

∂

∂
R∗

0
R0

E0

[
R∗

0

ε1
ε0

−R0

∣∣∣ Γ1 = ΓL

]
> 0.

A positive carry trade return implies an excessive appreciation, relative to interest differentials,

of the high-interest-rate currency against the low-interest-rate currency. These returns, which

grow with the interest differential, arise to compensate speculators for holding the disaster risk

(Γ1) associated with their net-long positions in high-interest-rate currency.

Next, I show how speculators’ behavior shapes exchange rate dynamics in disasters. Rela-

tive to Gabaix and Maggiori (2015), I prove two new results. First, I show that high-interest-rate

currencies can suffer depreciations far larger than interest differentials in disasters, implying ex-

post losses on the carry trade. Second, I show that the size of this disaster-state depreciation

18The assumption matches the unconditional pattern of UIP deviations we see in the data: high-interest-rate
currencies offer speculators a positive expected returns across all states. The distinct exchange rate dynamics in
each state, normal times and disasters, are the focus of the remainder of this section.
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Figure 3: Simulated Exchange Rate Change Distribution due to Speculators

(a) R∗ −R > 0 (b) R∗ −R < 0

Note. Figure 3 displays simulated distributions of exchange rate changes, log( ε1
ε0
), which take into account only

the behavior of speculators (formally λ0 = λ1 = 0), from simulating the model and aggregating exchange rate
movements into histograms. In panel 3a, the foreign interest rate is 10% and the home interest rate is 1%. In
panel 3b, the foreign interest rate is 1% and the home interest rate is 10%. The full parameterization is available
in Appendix C. Exchange rate movements in the small mode in each panel, labeled Γ1 = ΓH , refer to exchange
rate movements conditional on a disaster, whereas movements in the large mode, labeled Γ1 = ΓL, are movements
conditional on no-disaster.

is increasing in the magnitude of the interest differential:

Prediction 1: Abstracting from hedgers, for a sufficiently small disaster probability p,

a sufficiently small ΓLand a sufficiently large ΓH ,we have

R∗
0 > R0 =⇒ E0

[
R∗

0

ε1
ε0

−R0

∣∣∣ Γ1 = ΓH

]
<< 0

where if
R∗

0
R0

↑ (and if ΓH ↑ or ΓL ↓ as well) we have E0

[
R∗

0
ε1
ε0

−R0

∣∣∣ Γ1 = ΓH

] y
R∗

0
R0

, as well as ΓL and ΓH , affect the size of the high-yield currency’s depreciation because

exchange rate dynamics in disasters are driven by speculator deleveraging. Since a higher inter-

est rate differential,
R∗

0
R0

↑, or greater initial funding market liquidity, ΓL ↓, permits speculators

to take larger carry trade positions (more risk) at t = 0, as outlined in Corollary 1, they in-

crease the amount of risk that speculators must shed in disasters. Similarly, as the size of the

funding market disaster at t = 1 worsens, ΓH ↑, speculators are also forced to deleverage more,

worsening carry trade losses.

Together, Corollary 1 and Prediction 1 imply a state-dependent relationship between rela-

tive interest rates and exchange rate dynamics. This state-dependence is visible in the exchange
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rate change (log( ε1ε0 )) distributions in Figure 3, which I construct by simulating my model and

aggregating exchange rate movements into histograms. In addition, Corollary 1 and Prediction

1 highlight that the direction of exchange rate movements in each state is tied to the sign of the

interest differential. This feature is also visible in the simulations in Figure 3. Specifically, the

exchange rate change distribution in panel 3a, in which the foreign currency is parameterized

to have the high-interest-rate, is the transposition of the one in Panel 3b, in which the foreign

currency has the low-interest-rate. The empirical framework I develop in section 3 is informed

by the state-dependence and interest-rate symmetry of exchange rate movements predicted by

speculators in my model.

Next, I reintroduce hedgers into the analysis. As such, the remaining results in this section

hold for the dollar vis-à-vis other currencies. Hedgers’ flight to the dollar in disasters, due to

spikes in the Treasury liquidity yield λ1, imply that:

Prediction 2: For a sufficiently small p and λ0, when the U.S. is the home country, we have

∂

∂(λ1 − λ0)
E0

[
R∗

0

ε1
ε0

−RUS
0

∣∣∣ Γ1 = ΓH

]
< 0.

That is, the U.S. dollar has a unique tendency to appreciate in disasters, regardless of interest

differentials.

When accounting for the behavior of both speculators and hedgers in disasters (Predictions

1 and 2), we arrive at the paper’s main theoretical result:

Main Result: For a sufficiently small p and λ0, if R
∗,high
0 −RUS

0 = RUS
0 −R∗,low

0 > 0, we have

∣∣∣ E0

[
R∗,high

0

ε1
ε0

−RUS
0

∣∣∣ Γ1 = ΓH

] ∣∣∣ >>
∣∣∣ E0

[
RUS

0

ε0
ε1

−R∗,low
0

∣∣∣ Γ1 = ΓH

] ∣∣∣
Speculators’ unwinding of carry trades and hedgers’ flight to the dollar reinforce each other

when the U.S. interest rate RUS
0 is low, as compared to the foreign rate R∗,high

0 , leading to an

amplified appreciation of the dollar in disasters. Conversely, the two effects offset each other

when the U.S. interest rate RUS
0 is high, as compared to the foreign rate R∗,low

0 , leading to a

dampened depreciation, or even an appreciation, of the dollar in disasters. In this latter case,

which effect dominates depends on two factors: (i) the magnitude of the interest differential

R∗
0/R0 and the spike in the U.S. Treasury liquidity yield ∆λ1; and (ii) the relative elasticity

of exchange rates to interest differentials versus changes in Treasury liquidity, ∂e1/∂
R∗

0
R0

and

∂e1/∂∆λ1, respectively. In the data, I find that both forces can dominate.

This amplification or dampening of the dollar’s exchange rate movement in disasters due to
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Figure 4: Simulated Exchange Rate Change Distribution due to Speculators and Hedgers

(a) R∗ −RUS > 0 (b) R∗ −RUS < 0

Note. In each panel of Figure 4, I present 2 simulated distributions of exchange rate changes, log( ε1
ε0
), constructed

by simulating the model and aggregating exchange rate movements into histograms. The first, in yellow, accounts
only the behavior of speculators (formally λ0 = λ1 = 0), and is the same as in Figure 3. The second, in purple,
accounts for the behavior of both speculators and hedgers. In panel 4a, the foreign interest rate is 10% and
the U.S. interest rate is 1%. In panel 4b, the foreign interest rate is 1% and the U.S. interest rate is 10%. The
full parameterization is available in Appendix C. Exchange rate movements in the small mode in each panel,
labeled Γ1 = ΓH , refer to exchange rate movements conditional on a disaster, whereas movements in the large
mode, labeled Γ1 = ΓL, are movements conditional on no-disaster. Blue arrows indicate to how the exchange
rate change distribution changes when hedgers behavior is accounted for.

hedgers is large (>>) as compared to the compensation that speculators require to fund carry

trades in dollars, due to the dollar’s tendency to appreciate in disasters:

Corollary 2: For R∗,high
0 −RUS

0 = RUS
0 −R∗,low

0 > 0, we have

∣∣∣ E0

[
R∗,high

0

ε1
ε0

−RUS
0

∣∣∣ Γ1 = ΓL

] ∣∣∣ >
∣∣∣ E0

[
RUS

0

ε0
ε1

−R∗,low
0

∣∣∣ Γ1 = ΓL

] ∣∣∣
This highlights that the dollar tends to depreciate conditional on no disaster to compensate

speculators for the greater risks from funding carry trades in dollars. Thus, carry trades long

high-yield currencies and short the dollar should offer greater returns conditional on no-disaster

compared to carry trades long the dollar and short low-yield currencies. This may help explain

the size of the risk premium on the dollar carry trade, which Lustig et al. (2014) show cannot

be fully accounted for by a calibrated no-arbitrage model that does not adjust for the dollar’s

reserve-currency status.

My main result, as well as Corollary 2, are visible in the simulations in Figure 4, which

compares, in each panel, the exchange rate change distribution when considering only the

behavior of currency speculators with one that also accounts for the behavior of hedgers. The
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main takeaway here is that the inclusion of hedgers breaks the symmetry result that was visible

in Figure 3. This asymmetry can be made even more stark, as shown in in Appendix C, if the

interest differential is small and the spike in the Treasury liquidity yield is large.19 In this case,

hedgers’ flight to dollar pushes the disaster state from the right-tail into the left-tail, implying

an appreciation of the high-yield U.S. dollar in the disaster. This possibility will be considered

in my empirical framework.

In all, my model bridges the gap between competing interest-rate theories (Brunnermeier

et al., 2009 and Farhi and Gabaix, 2016) and U.S.-centric theories (Gourinchas et al., 2010 and

Maggiori, 2017) of exchange rates in disasters by showing that exchange-rate dynamics reflect

the currency flows of speculators and hedgers.

3 Empirical Strategy

In this section, I discuss the empirical strategy I use to test my model’s predictions. I first

outline my data and define key variables. Next, I develop the signed quantile UIP regression, a

novel approach to modelling exchange rate dynamics relative to interest differentials in disasters,

and show how it can be used to test Prediction 1. Finally, I highlight how a variation of the

signed quantile UIP regression can be used to test Prediction 2.

3.1 Data and Definitions

In this paper, I consider a monthly sample, from 1986:M1 to 2020:M12, of interest rates and

exchange rates for “G-10” currencies: Australia (AUD), Canada (CAD), Germany (EUR),

Japan (JPY), Norway (NOK), New Zealand (NZD), Sweden (SEK), Switzerland (CHF), the

United Kingdom (GBP), and the United States (USD). I study the three-month (overlapping)

exchange rate movements of each of these currencies relative to the remaining nine currencies.

Interest rate data correspond to three-month government bond yields. The German mark

substitutes for the Euro in the period prior to the Euro’s introduction in 1999:M1 and Euro

area interest rates are from German bonds. All data used correspond to end-of-month figures.

I denote by et the logarithm of the nominal exchange rate εt at time t in units of domestic

currency per unit of foreign currency, et ≡ log(εt), such that an appreciation of the foreign

19Alternatively, the elasticity of exchange rates to changes in liquidity yields (interest differentials) can be
increased (decreased).
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currency corresponds to an increase in et.
20 The logarithm of the domestic and foreign gross

nominal interest rates at time t are given by it ≡ log(Rt) and i∗t ≡ log(R∗
t ), respectively.

21 Then,

the uncovered interest parity condition predicts that, in-expectation, high-interest-rate curren-

cies should depreciate relative to low-interest-rate currencies to exactly offset the difference in

their countries’ interest rates:

Et[i
∗
t − it +∆et+1] ≡ Et[zt+1] = 0, (16)

where ∆et+1 = et+1−et is the three-month (log) appreciation of the foreign currency and zt+1 is

the three-month (log) carry trade return. Summary statistics for interest differentials, exchange

rates and carry trade returns are presented in Appendix D. In particular, Figure D.1 uses the

cross-sectional skewness of exchange rate movements to show that while currencies with higher

average interest rates face a greater risk of extreme depreciations, the dollar carries significant

upside risk against all other currencies after controlling for interest differentials. These cross-

sectional results are consistent with the predictions of my model.

To verify whether my model’s mechanisms are behind the findings in Figure D.1, I use two

further pieces of data. First, I use data on the U.S. Treasury liquidity yield (Du et al., 2018a),

denoted by λt, which is defined as the deviation from covered interest parity (CIP) between the

U.S. and the foreign country:

λt = ft − et + i∗t − it (17)

where ft is the nominal three-month forward rate in logs. The data form an unbalanced panel

spanning 1991:M4 to 2020:M12.

When λt > 0, the pecuniary return on a synthetic USD bond, ft − et + i∗t , is greater than

the pecuniary return on a U.S. Treasury, it. Since arbitraging CIP deviations is riskless, this

implies the non-pecuniary return on the U.S. dollar bond must be greater than that on the

foreign currency bond. This non-pecuniary return is termed the USD liquidity yield. Positive

USD liquidity yields reflect the relative safety and liquidity, as perceived by investors, of dollar-

denominated Treasuries as compared to other foreign-currency-denominated government bonds.

Second, I use data on the long and short currency futures positions of both speculators

and hedgers trading on the Chicago Board of Exchange (CBOE) from the Commodity Futures

20In the previous section, εt referred to the real exchange rate. Beginning with Mussa (1986), studies have
shown the correlation between nominal and real exchange rates in logs to be very near 1, due to nominal rigidities.

21Again, I make a mapping from the real interest rates used in my model to nominal ones in the data.
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Trading Commission (CFTC). The CFTC sorts agents based on expert knowledge of their

businesses into those who use futures for non-hedging purposes—those I term speculators—

and those who use futures as a hedge—those I call hedgers.22 The data are available for six

currencies (AUD, CAD, CHF, EUR, GBP, JPY) relative to the USD in a balanced panel from

1993:M1 to 2020:M12.23 Using this data, I construct:

PosSj,t ≡
LongSj,t − ShortSj,t
Open Interestj,t

PosHj,t ≡
LongHj,t − ShortHj,t
Open Interestj,t

(18)

the net (long minus short) currency position of speculators and hedgers, respectively, in the

Chicago Board of Exchanges’ futures market for currency j relative to the USD, normalized

by the total open interest of all traders for currency j futures.24 A positive speculator or

hedger position implies they are net-long currency j and net-short the USD. If an agent is net-

long currency j when its interest rate is greater than the U.S.’s, this agent implements a long

currency j–short USD carry trade. Summary statistics for the liquidity yield and financiers’

positions are again shown in Appendix D.

3.2 Signed Quantile UIP Regressions

In this section, I outline the signed quantile UIP regression. The approach accounts for two

key features of exchange rate movements in the data that arise due to speculators in my model:

state-dependence (disasters versus normal times) and symmetry (for high- and low-interest-rate

currencies). I will use this regression to test Corollary 1 and Prediction 1.

The starting point is the time-series UIP regression of Fama (1984), which regresses ex-

change rate movements on interest differentials:

∆et+1 = β0 + β1(i
∗
t − it) + ut+1 (19)

The null (UIP) hypothesis is β0 = 0 and β1 = −1. As is well-known, estimating (19) (at short-

horizons) by least squares produces estimates of β̂1 > −1, implying that high-interest-rate

22The CFTC refers to speculators as non-commercial traders and hedgers are commercial traders. While this
data does not capture the full market for U.S. dollar trades, much of which occurs over-the-counter, it has
several advantages. First, the data is available at a relatively high frequency, which allows me to study flows in
sudden crises. Second, the maturity of the contracts is three months, which matches the horizon of exchange rate
movements I study. Third, the CFTC sorts agents into speculators or hedgers, such that I don’t have to take a
stand on this myself. And fourth, the data captures the entire market for currency futures trades on one of the
world’s largest commodity exchanges, meaning the data likely constitutes a representative sample.

23Data from 1986:M1 to 1992:M12 are not used to data errors, as noted by the CFTC.
24The variables defined in (18) are, strictly speaking, speculators’ and hedgers’ “net-long-to-total positions” in

currency j, respectively. With a slight abuse of language, I refer to them as “net-long positions” for short.

20



currencies insufficiently depreciate (and sometimes even appreciate) against low-interest-rate

currencies. This result is unsurprising since the OLS coefficient β̂1 measures the marginal effect

of interest differentials on the conditional mean exchange rate movement, which cannot fully

offset interest differentials in my model else speculators will not earn a positive expected return.

As highlighted in Figure 3, this mean exchange rate movement masks considerable state-

dependence. In particular, speculator carry trades in normal times imply mild exchange rate

movements that manifest at the center of the exchange rate change distribution, while their

deleveraging in disasters lead to extreme exchange rate swings that manifest in the distribution’s

tails. To account for this, I estimate the UIP relationship by quantile regression (Koenker and

Bassett Jr (1978)): ∆et+1 = βτ
0 + βτ

1 (i
∗
t − it) + uτt+1, where τ denotes the quantile.

The quantile UIP regression, however, does not account for the interest-rate symmetry

of exchange rate movements (see Panels 3a and 3b). That is, as shown in Appendix E, the

quantile UIP regression chooses a single quantile marginal effect βτ
1 for the interest differential

to explain ‘sets’ of exchange rate movements that ought not to be grouped together according to

my model. For example, a single βτ
1 to explain both the depreciations of high-yield currencies,

which are due to the unwinding of carry trades by speculators in disasters, and the depreciations

of low-yield currencies, which are due to speculator carry trades in normal times. To address

this deficiency, I develop the signed quantile UIP regression:

Proposition 1: The signed quantile UIP regression interacts each term in the quantile UIP

regression with the sign of the interest rate differential, St ≡ sign(i∗t − it) =

1 if i∗t ≥ it

−1 if i∗t < it

:

∆et+1 × St = βτ
0St + βτ

1 (i
∗
t − it)× St + uτt+1. (20)

βτ
1 captures the marginal effect of i∗t − it on ∆et+1, as in the least-squares UIP regression, but

at the τ th quantile of the conditional signed exchange rate change distribution, which is formed

by weighting errors by 1 − τ if the depreciation of the high-interest-rate foreign currency or

appreciation of the low-interest-rate foreign currency is sufficiently large (i.e. ∆et+1 × St <

βτXS
t ), where XS

t = {St, (i
∗
t − it) × St}, and by τ otherwise. On the other hand, the quantile

UIP regression weights errors by 1− τ if the foreign currency’s depreciation is sufficiently large

and by τ otherwise. As such, the signed quantile UIP regression adjusts for the interest-rate

symmetry of exchange rate movements. This interpretation is not unique to i∗t − it; it holds for

any conditioning variable in XS
t , provided they too are interacted with St.

Appendix E provides a proof for proposition 1. The intuition, however, is presented in
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Figure 5: Simulated Signed Exchange Rate Change Distribution due to Speculators

(a) R∗ −R > 0 (b) R∗ −R < 0

Note. Figure 5 displays simulated distributions of signed exchange rate change, log( ε1
ε0
)× sign(R∗

t −Rt), which
take into account only the behavior of speculators (formally λ0 = λ1 = 0), from simulating the model and
aggregating exchange rate movements into histograms. In panel 5a, the foreign interest rate is 10% and the home
interest rate is 1%. In panel 5b, the foreign interest rate is 1% and the home interest rate is 10%. The full
parameterization is available in Appendix C. Exchange rate movements in the small mode in each panel, labeled
Γ1 = ΓH , refer to exchange rate movements conditional on a disaster, whereas movements in the large mode,
labeled Γ1 = ΓL, are movements conditional on no-disaster.

Figure 5, which displays simulated signed exchange rate change, ∆et+1 × St, distributions

when the interest differential is positive (in Panel 5a) and when the the interest differential is

negative (in Panel 5b).25 When the interest differential is positive, the sign interaction is akin

to multiplying ∆et+1 by 1 such that the simulated signed exchange rate change distribution in

Panel 5a is identical to the simulate exchange rate change distribution in Panel 3a. However,

when the interest differential is negative, the sign interaction multiplies ∆et+1 by −1, thereby

transposing the exchange rate change distribution from Panel 3b about the vertical axis. Thus,

by leveraging the symmetry of exchange rate movements imposed by speculators, the sign-

transform allows me to recover the same (signed) exchange rate change distribution for both

high- (Panel 5a) and low- (Panel 5b) interest-rate currencies. Interacting the interest rate

differential with its sign ensures I continue to estimate the marginal effect of interest differentials

on exchange rate movements, as in the traditional Fama (1984) regression.

Importantly, the sign interaction places all speculator-driven disaster-state exchange rate

movements—large depreciations (appreciations) of high- (low-) interest-rate currencies—into

the left tail. I then define the 1st percentile of the conditional signed exchange rate change

distribution, my baseline measure for the disaster-state, as speculators’ “Foreign Exchange-at-

25Since the distribution comes from the model, it actually corresponds to log( ε1
ε0
)× sign(R∗

t −Rt).
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Risk”, FEaRS :

Pr
[

̂∆et+1 × St | XS
t ≤ FEaRS

t+1

]
= 0.01, (21)

where the conditioning vector XS
t is {St, (i

∗
t − it)× St} in (20).

3.3 Building on the Signed Quantile UIP Regression

To capture the effects of hedgers and empirically test Prediction 2, I augment (20) with the

change in the U.S. Treasury liquidity yield, ∆λt+1:

∆et+1 × St = βτ
0St + βτ

1 (i
∗
t − it)× St + βτ

2∆λt+1 × St + uτt+1, (22)

where the base currency is the U.S. dollar and ∆λt+1 is interacted with the sign of the interest

differential. As stated in Proposition 1 and proved in Appendix E, the interaction with St

allows me to study the liquidity yield’s impact on exchange rate movements without imposing

sign-dependence on the effect: a negative β2 implies that an increase in the Treasury liquidity

yield predicts a fall in ∆et+1, a U.S. dollar appreciation, regardless of interest differentials.26

My model predicts the Treasury liquidity yield is an important driver of exchange rate

movements in disasters. To understand in which tail of the signed exchange rate change dis-

tribution these effects should materialize, Figure 6 displays simulated distributions of signed

exchange rate changes, ∆et+1 × St, which now account also for the behavior of hedgers (in

purple). It displays the distributions when the interest differential is positive in Panel 6a and

when the the interest differential is negative in Panel 6b.

When additionally accounting for the behavior of hedgers, the signed exchange rate change

distributions are no longer identical for high- and low-interest rate currencies. Still, the disaster-

state outcomes materialize in the left-tail in both panels of Figure 6. In Panel 6a, this occurs

because speculators’ and hedgers’ effects reinforce one another, leading to an amplified appreci-

ation of the low-interest-rate U.S. dollar. Conversely, in Panel 6b, this occurs because, although

the two financiers’ portfolio adjustments offset each other, the model has been parameterized

such that speculators’ effect dominates and the high-interest-rate U.S. dollar experiences a

dampened depreciation in the disaster. In these two cases, one would expect to find the U.S.

Treasury liquidity yield’s effect present in the left-tail, that is, at speculators’ FEaR (FEaRS).

A third possibility, which is shown in Appendix C, is that, if the U.S. interest rate differen-

tial is not too wide, the spike in Treasury liquidity is large enough, and the elasticity of exchange

26Intuitively, the St terms on either side of the regression cancel.

23



Figure 6: Simulated Signed Exchange Rate Change Distribution with Speculators and Hedgers

(a) R∗ −RUS > 0 (b) R∗ −RUS < 0

Note. In each panel of Figure 6, I present 2 simulated distributions of signed exchange rate changes, log( ε1
ε0
) ×

sign(R∗
t −RUS

t ), constructed by simulating the model and aggregating exchange rate movements into histograms.
The first, in yellow, accounts only the behavior of speculators (formally λ0 = λ1 = 0). The second, in purple,
accounts for the behavior of both speculators and hedgers. In panel 6a, the foreign interest rate is 10% and
the U.S. interest rate is 1%. In panel 6b, the foreign interest rate is 1% and the U.S. interest rate is 10%. The
full parameterization is available in Appendix C. Exchange rate movements in the small mode in each panel,
labeled Γ1 = ΓH , refer to exchange rate movements conditional on a disaster, whereas movements in the large
mode, labeled Γ1 = ΓL, are movements conditional on no-disaster. Blue arrows indicate to how the exchange
rate change distribution changes when hedgers behavior is accounted for.

rates to liquidity yields is sufficiently high, hedgers’ effect overcomes that of speculators and

pushes the disaster-state into the right-tail of the signed-exchange rate change distribution, im-

plying an appreciation of the high-yield U.S. dollar.27 This leads me to define the 99th percentile

of the conditional signed exchange rate change distribution as hedgers’ “Foreign Exchange-at-

Risk” FEaRH :

Pr
[

̂∆et+1 × St | XS
t ≤ FEaRH

t+1

]
= 0.99, (23)

where the conditioning vector XS
t is {St, (i

∗
t − iUS

t )× St,∆λt+1 × St} when estimating (22). In

this third case, one would expect to find liquidity yield’s effect manifesting at hedgers’ FEaR

(FEaRH).28

Finally, to test the mechanisms of my model, I will replace the signed exchange rate move-

ment ∆et+1 × St in (20) and (22) with the signed change in speculators’ and hedgers’ portfolio

27The final possibility is the knife-edge case in which speculators’ and hedgers’ effects (exactly) cancel one
another, such that the disaster-state exchange rate movement would manifest in the center of the signed exchange
rate change distribution. In this case, one would expect to find the liquidity yield’s effect at the central quantiles
of the distribution.

28Of note, the right tail of ∆et+1 × St also holds all large depreciations of the dollar when the U.S. has a
relatively high interest rate. These episodes, on the other hand, need not be driven by hedgers’ flight to the
dollar, although this flight to safety would dampen the extent of the dollar’s depreciation.
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positions, ∆PosSt+1 × St and ∆PosHt+1 × St, respectively, where financiers’ portfolio positions

are as defined in (18). I leave the precise details to section 4.

4 Empirical Results

In this section, I use the empirical strategy developed in Section 3 to test the predictions of my

model. Further, I test whether my model’s mechanisms underlie these exchange rate dynamics

by studying the portfolio adjustments of speculators and hedgers. In 4.1, I test Corollary 1 and

Prediction 1, which, in my model, arise due to speculator behavior. In 4.2, I focus on Prediction

2, which arises due to hedgers in my framework, and discuss Corollary 2 as well. Robustness is

discussed at the end of each sub-section.

4.1 Interest Differentials, Exchange Rates and Speculator (De)Leveraging

I begin by estimating panel signed quantile UIP regressions with currency fixed effects for the

case where the U.S. is the domestic currency vis-a-vis the remaining G-10 currencies:

∆ej,t+1 × Sj,t = βτ
0Sj,t + βτ

1 (i
∗
j,t − it)× Sj,t + f τ

j + uτj,t+1. (24)

Figure 7 presents the quantile marginal effects for the signed interest rate differential (β̂τ
1 )

from estimating regression (24) at different quantiles τ . The quantiles estimated range from

τ = 0.005 to τ = 0.995 and run from lowest to highest along the horizontal axis.29 The

yellow bars represent the marginal effects, measured along the vertical axis, while the red error

bars correspond to 90% confidence intervals constructed using an overlapping block bootstrap

procedure that accounts for heteroskedasticity and autocorrelation, as in Adrian et al. (2022)

(see Appendix E.1 for details). The blue horizontal line at −1 indicates the marginal effect

for which UIP holds, β̂UIP
1 = −1. In each regression, the sample size is 3780 observations (9

currencies times 420 months).30

The results showcase the highly state-dependent relationship between relative interest rates

and U.S. dollar exchange rate movements. If UIP held each period, the marginal effects at each

quantile would be on the UIP line at −1. Instead, the interest rate differential’s marginal

29For robustness, I estimate a large number of left-tail quantiles (τ ∈ {0.005, 0.01, 0.025, 0.05, 0.1}) and right-
tail quantiles (τ ∈ {0.9, 0.95, 0.975, 0.99, 0.995}) as these tail quantiles weight fewer observations a relatively large
amount, compared to the central quantiles (τ ∈ {0.3, 0.5, 0.7}).

30This is a large sample compared to many other studies in macro-finance that use quantile regression, which
often feature quarterly GDP data for a single country.
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Figure 7: The U.S. Signed Quantile UIP Regression
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Note. Figure 7 presents panel quantile regression coefficients for the signed interest rate differential
on the signed exchange rate change, (β̂τ

1 ) from estimating (24) using the USD as the domestic cur-
rency vis-à-vis the remaining G-10 currencies. The sample period is 1986:M1 to 2020:M12. Quantiles
τ = {0.005, 0.01, 0.025, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.975, 0.99, 0.995} range along the horizontal
axis. The blue line is the “UIP line”. Red error bars are 90% confidence intervals constructed using a block
bootstrap with 500 bootstrap samples.

effect at the median is larger than −1, implying that high-interest-rate currencies are predicted

to excessively appreciate, relative to interest differentials, against low-interest-rate currencies.

Specifically, a 1 percentage point (pp) increase in the U.S. relative interest rate predicts about a 1

pp greater dollar appreciation at the median, my empirical proxy for conditional on no-disaster.

Conversely, the marginal effects at the 1st percentile of the distribution are signicantly below

−1, implying depreciations of high-yield currencies in disasters that are far greater that interest

differentials. Quantitatively, a 1 pp increase in the U.S. relative interest rate predicts about an

8 pp larger dollar depreciation at the FEaRS . Further, these ‘disaster-state’ marginal effects

are also present at other left-tail percentiles I estimate (the 0.5th, 2.5th and 5th). Altogether,

the results in Figure 7 match the predictions of my model.

This state-dependent relationship between relative interest rates and exchange rate dynam-

ics appears also when other G-10 currencies serve as the domestic currency in the panel signed

quantile UIP regression (24). Alongside the U.S. dollar results in Panel 8a, the other panels

of Figure 8 presents quantile marginal effects for the signed interest rate differential (β̂τ
1 ) from

estimating (24) for the remaining G-10 currencies, with the labels atop each panel denoting the

domestic currency. As in the U.S. dollar case, for most G-10 currencies, interest differentials

predict high-interest-rate currencies to excessively appreciate relative to UIP at the median but
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Figure 8: State-Dependent Uncovered Interest Parity Relations for G-10 Currencies

(a) USD

-15

-10

-5

0

5

0.005 0.01 0.025 0.05 0.1 0.3 0.5 0.7 0.9 0.95 0.975 0.99 0.995

Marginal Effects

(b) GBP
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(c) AUD
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(d) JPY
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(e) NZD
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(f) SEK
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(g) CHF
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(h) EUR
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(i) CAD
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(j) NOK
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Note. Figure 8 presents panel quantile regression coefficients for the signed interest rate differential on the
signed exchange rate change, (β̂τ

1 ) from estimating (24) for each G-10 currency. The labels atop each panel
denote the domestic currency vis-à-vis the remaining G-10 currencies. The sample period is 1986:M1 to
2020:M12. Quantiles τ = {0.005, 0.01, 0.025, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.975, 0.99, 0.995} range
along the horizontal axis in each panel. The blue line is the “UIP line”. Red error bars are 90% confidence
intervals constructed using a block bootstrap with 500 bootstrap samples.
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Figure 9: The State-Dependence of Speculators’ Carry Trade Positions

(a) Carry Trading in Normal Times
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(b) Unwinding in Disasters
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Note. Panel 9a of Figure 9 presents panel quantile regression coefficients for the interest rate differential
(β̂τ

1 ) on speculator positions from estimating (25). Panel 9b presents panel quantile regression coefficients for
the signed interest rate differential (β̂τ

1 ) on the signed change in speculator positions from estimating (26).
The USD is the base (domestic) currency vis-à-vis 6 major currencies from 1993:M1 to 2020:M12. Quantiles
τ = {0.005, 0.01, 0.025, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.975, 0.99, 0.995} range along the horizontal
axis in each panel. The blue line is the “zero line” in each panel. Red error bars are 90% confidence intervals
constructed using a block bootstrap with 500 bootstrap samples.

to experience large depreciations far in-excess of interest differentials in the left-tail.31 These

findings are consistent with Corrollary 1 and Prediction 1: according to interest differentials,

while carry trades implemented using any of these currencies tend to be profitable in normal

times, they earn large losses in disasters.

Next, I test whether speculators’ state-dependent behavior may be behind the exchange rate

dynamics presented in Figure 8. To do so, I estimate by quantile regression two specifications

using PosSj,t, the net-long position of speculators in currency j relative to the dollar, as the

dependent variable.

First, to investigate the relation between interest differentials and speculators’ currency

positions in normal times, I estimate:

PosSj,t = βτ
0 + βτ

1 (i
∗
j,t − it) + f τ

j + uτj,t+1 (25)

The positive coefficient at the median in Panel 9a, from estimating (25), implies that an increase

in country j’s relative interest rate predicts an increase in speculators’ net-long position in

currency j. That is, speculators use currency futures to carry trade in normal times. The

estimated elasticity is also quite large: a 1 pp increase in country j’s relative interest rate

predicts over a 25 pp increase in speculators’ net-long positions in currency j, as a fraction the

total open interest in j.

31The exceptions are the CHF and NOK in the left-tail, although the point-estimates are still large and negative,
and the NZD at the median.
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Second, to investigate the relation between interest differentials and changes in speculators’

currency positions in disasters, I estimate:

∆PosSj,t+1 × Sj,t = βτ
0Sj,t + βτ

1 (i
∗
j,t − it)× Sj,t + f τ

j + uτj,t+1. (26)

This regression is the speculator positions analogue of the signed quantile UIP regression in

(24). Specifically, it replaces ∆ej,t+1 × Sj,t as the dependent variable with the signed change

in speculators’ currency positions. I term the left tail of the ∆PosSj,t+1 × Sj,t distribution

the carry-trade-unwinding tail, since it stores the largest decreases (increases) in speculators’

net-long positions in currency j when currency j has the relatively high (low) interest rate.

The large, negative coefficients in the left-tail of Panel 9b highlight that interest differentials

predict these large carry trade unwindings. Quantitatively, a 1 pp increase in country j’s relative

interest rate predicts a more than 15 pp larger decline in speculators’ net-long position in

currency j. And since speculators unwind their carry trades in the same periods in which high-

yield currencies suffer large depreciations, as shown in Figure F.9, these results suggest that

speculator deleveraging may be driving, or at least amplifying, these disaster-state exchange

rate movements, as they do in my model.

Robustness and Additional Results: In Appendix F, I show that the exchange rate results

from this section are robust to many variations of my empirical approach. In F.4, I show they

are little changed once I control for investors’ interest rate expectations, an important concern

raised by Hassan and Mano (2019). In F.8, I show my results are robust to controlling for

a ‘signed’ currency fixed effects, which controls for time-invariant factors that may push the

domestic currency to appreciate, in addition to the currency fixed effect used in my baseline

specification that controls for time-invariant factors that may push the high-yield currency to

appreciate. I show in F.9 that my results are not driven exclusively by the largest disaster

episode in my sample, the collapse of Lehman Brothers in September 2008. Finally, in F.10, I

show that the state-dependent relation between interest differentials and exchange rate dynamics

holds also on a currency-by-currency basis. Robustness to the speculator positions regression

is discussed at the end of Section 4.2.

Appendix F also provides some additional empirical results to supplement the ones from

this section. In F.1, I present results from estimating quantile UIP regressions without the sign

interaction and showcases this specification’s deficiencies relative to (24). In F.2, I present the

quantile analogue of the R2, R1(τ), and highlight the strong fit of my model in the left-tail of

the signed exchange rate change distribution. And finally, in F.7, I estimate quantile regression
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Figure 10: Interest Differentials, Treasury Liquidity Premia and Tail Exchange Rate Dynamics

(a) Interest Rate Differential
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(b) ∆ U.S. Treasury Liquidity Yield
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Note. Figure 10 presents panel quantile regression coefficients for the signed interest rate differen-
tial (β̂τ

1 in Panel 10a) and the signed liquidity yield (β̂τ
2 in Panel 10b) on the signed exchange rate

change, from estimating (27) with the USD as the base (domestic) currency vis-a-vis the remaining
G-10 currencies. The sample period is from 1991:M4 to 2020:M12 (unbalanced). Quantiles τ =
{0.005, 0.01, 0.025, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.975, 0.99, 0.995} range along the horizontal axis
in each panel. The blue line is the ‘UIP line” in Panel 10a and the “zero line” in Panel 10b. Red error bars
are 90% confidence intervals constructed using a block bootstrap with 500 bootstrap samples.

models that include the VIX index to demonstrate the drawbacks of using measures of financial

market stress to explain exchange rate dynamics in disasters

4.2 Treasury liquidity, Exchange Rates and Hedger Portfolios in Disasters

To test Prediction 2, I augment the U.S.’s signed quantile UIP regression in (24) with the signed

change in the U.S. Treasury liquidity yield ∆λj,t+1 × Sj,t:

∆ej,t+1 × Sj,t = βτ
0Sj,t + βτ

1 (i
∗
j,t − it)× Sj,t + βτ

2 (∆λj,t+1)× Sj,t + f τ
j + uτj,t+1 (27)

Figure 10 presents the quantile regression coefficients for the signed interest rate differential

(βτ
1 ) in Panel 10a and the signed liquidity yield (βτ

2 ) in Panel 10b. The negative marginal effects

at the FEaRS in Panel 10a highlight that the inclusion of the liquidity yield does not distort

the interest-differential’s effect on exchange rates in disasters. In fact, the left-tail marginal

effects become even larger: a 1 pp widening of interest differentials now predicts over a 10 pp

depreciation of the high-yield currency in disasters.32

As expected, the liquidity yield has effects in both tails of the conditional signed exchange

rate change distribution (Panel 10b). The large negative marginal effects indicate that an

increase in the liquidity yield on U.S. Treasuries predicts a sizeable appreciation of the dollar

32The interest differential’s effect at the median is also little changed when including the Treasury liquidity
yield.
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Figure 11: Conditional U.S. dollar Exchange Rate Change Distribution

(a) R∗ > RUS (b) R∗ < RUS

Note. Figure 11 presents conditional U.S. dollar exchange rate change distributions when the U.S. interest
rate is relatively low (Panel 11a) and when the U.S. interest rate is relatively high (Panel 11b). Following the
methodology of Adrian et al. (2019), the PDFs are estimated by fitting the empirical conditional quantiles
(β̂τXt) constructed using the coefficients from Figure 10 to the theoretical quantiles of the Skew-T distribu-
tion. In terms of Xt, the magnitude of the interest differential is set to 1% and the change in the Treasury
liquidity yield is 75 basis points. The blue PDFs in each panel condition only on interest differentials while
the red PDFs condition also on the change in the U.S. Treasury liquidity yield. See Appendix E.2 for details.

in disasters, regardless of the U.S.’s relative interest rate. Importantly, while the interest-

differential channel was present for all currencies in my sample, this liquidity yield channel

appears unique to the U.S. dollar. The tail marginal effects imply that a 75 basis point rise in

Treasury liquidity, which corresponds to the spike during the bursting of the “Dot-Com” bubble

in 2000 (see Figure 1), predicts a dollar appreciation of between 1.5 percent at the 1st percentile

and 3 percent at the 99th percentile (the FEaRH).

The structure imposed by the signed quantile UIP approach, as discussed in Section 3,

helps interpret the net effect of interest differentials and liquidity yields on exchange rates in

each tail. When the U.S. interest rate is relatively low, spikes in the Treasury liquidity yield

reinforce the interest-differential channel, generating an amplified appreciation of the low-yield

dollar in disasters. Thus, disaster dynamics remain in the left-tail. On the other hand, when

the U.S. interest rate is relatively high, the two channels offset each other, leading to two cases.

When the interest-rate channel dominates, the high-yield dollar’s depreciation in disasters is

dampened, but the dynamics remain in the left tail. Conversely, when the liquidity-yield force

dominates, the high-yield dollar appreciates in the disaster, which pushes the disaster dynamics

into the right tail.33

The dollar’s amplified appreciation against high-yield currencies and dampened depreci-

33Of note, some of these right-tail episodes occur when the U.S. dollar has a relatively low interest rate, in
which case spikes in dollar liquidity dampen the extent of the dollar’s depreciation.
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ation, or appreciation, against low-yield ones in disasters is unmistakable in the conditional

exchange rate change distributions displayed in Figure 11. These distributions are estimated

following the methodology of Adrian et al. (2019), using as inputs the quantile marginal effects

displayed in Figure 10 (see Appendix E.2 for details). Each panel compares two ∆et+1 distri-

butions, where recall that an increase in ∆et+1 implies an appreciation of the foreign currency

vis-à-vis the dollar. The first, in blue, accounts only for the effect of a 1 pp interest differential.

The second, in red, considers also the effect of a 75 basis point spike in the Treasury liquidity

yield.

The key takeaway is that while the distributions accounting only for interest differentials

are transpositions of each other about the vertical axis, with the high-yield currency at risk

of a large “disaster-state” depreciation, the inclusion of the Treasury liquidity yield breaks

this symmetry. In Panel 11a, where the U.S. interest rate is relatively low, spikes in Treasury

liquidity extend the left-tail of the distribution, reflecting an amplified appreciation of the low-

yield dollar in disasters. In Panel 11b, where the U.S. interest rate is relatively high, spikes in

Treasury liquidity shorten the right-tail of the distribution and move probability mass to the

left-tail, reflecting a dampened depreciation or even an appreciation of the high-yield dollar in

disasters.34 In all, these findings are consistent with the “Main Result” from my model and

demonstrate the significant asymmetry between the dollar’s exchange-rate dynamics in disasters

against high-interest-rate and low-interest-rate currencies.

Finally, I investigate whether hedgers’ flight to Treasury liquidity may be behind the dollar’s

unique tendency to appreciate in disasters. To do so, I use PosHj,t, the normalized net-long

position of hedgers in currency j relative to the dollar, to estimate:

∆PosHj,t+1 × Sj,t = βτ
0Sj,t + βτ

1 (i
∗
j,t − it)× Sj,t + βτ

2 (∆λj,t+1)× Sj,t + f τ
j + uτj,t+1 (28)

The regression in (28) is the hedger positions analogue of regression (27). Specifically, it

replaces ∆ej,t+1 × Sj,t as the dependent variable with the signed change in hedgers’ currency

positions ∆PosHj,t+1 × Sj,t. Since hedgers and speculators trade with each other in the CBOE’s

currency futures market, changes in their positions are inversely correlated, as shown in Figure

F.10.35 As a result, speculators’ carry trade unwindings in disasters, which occurred in the left

tail of their position distribution (Panel 9b) are accommodated by hedgers in the right tail of

34Due to the symmetry imposed by the signed quantile UIP regression, the right tail in Panel 11a shifts to the
left as well.

35The correlation coefficient is about −0.95. It isn’t exactly −1 since some agents are classified as neither
hedgers nor speculators by the CFTC. This third category of agents is small in the data and can be thought of
as the households of my model.
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Figure 12: Treasury Liquidity Yields and Hedgers’ Flight to U.S. Dollars
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Marginal Effects

Note. Figure 12 presents panel quantile regression coefficients for the signed U.S. liquidity yield (β̂τ
2 ) from

estimating (28). The USD is the base (domestic) currency vis-à-vis 6 major currencies from 1993:M1 to
2020:M12. Quantiles τ = {0.005, 0.01, 0.025, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.975, 0.99, 0.995} range
along the horizontal axis in each panel. The blue line is the “zero line” in each panel. Red error bars are
90% confidence intervals constructed using a block bootstrap with 500 bootstrap samples.

the ∆PosHj,t+1 × Sj,t distribution.

Figure 12 displays the marginal effects for the U.S. Treasury liquidity yield from estimating

(28). The large negative marginal effects in the right tail indicate that an increase in the

U.S. Treasury liquidity yield is associated with a significant flight to U.S. dollars by hedgers

in disasters. The magnitude implies that a 75 basis point rise in the liquidity yield on U.S.

Treasuries predicts a 7.5 percent increase in hedgers’ dollar holdings. Consistent with my

model, this flight to the liquidity by hedgers would appreciate the dollar in disasters against all

other currencies, regardless of relative interest rates.

Robustness and Additional Results: In Appendix F, I show that the exchange rate results

from this section are robust to many variations of my empirical approach, including ‘signed’

fixed effects (F.8), excluding the largest spike in the Treasury liquidity yield in September 2008

(F.9), and a currency-by-currency analysis (F.10). Further, in F.2, I show that including the

Treasury liquidity yield improves the goodness of fit R1(τ) in both tails of the signed exchange

rate change distribution.

I also provide additional empirical results to reinforce the conclusions from this section.

First, in Appendix F.5, I tease out the causal effect of spikes in the U.S. Treasury liquidity yield

on dollar appreciations in disasters using instrumental variable quantile regression. Following

Engel and Wu (2018), I instrument the Treasury liquidity yield with the VIX index, which is

a measure of equity market volatility that is not mechanically related to exchange rates. I find
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that the instrument is highly relevant and that the causal marginal effects are larger and more

significant than in my baseline. Second, I show explicitly in F.6 that speculators’ accommodate

hedgers’ flights to the dollar and hedgers’ accommodate speculators’ carry trade unwinding in

disasters. Finally, in Figure D.2 of Appendix D, I provide evidence consistent with Corollary 2:

the dollar has a tendency to depreciate conditional on no-disaster (at the median) against all

other currencies.

5 Conclusion

In this paper, I show that exchange rate dynamics in disasters reflect portfolio adjustments by

two distinct types of financial agent: speculators and hedgers. While speculators unwind carry

trades in disasters, pushing high-yield currencies to depreciate, it is hedgers’ desire for safe,

liquidity and convenient U.S. Treasuries that imbues the U.S. dollar with its unique tendency

to appreciate in disasters.

Due to the resilience of the U.S. economy, the Federal Reserve has been able to tighten

monetary policy aggressively in 2022-23 to combat inflation such that U.S. interest rates now

eclipse those of other advanced economies. According to my results, this makes the U.S. dol-

lar more of an investment currency for speculators’ carry trade and so increases its downside

exchange-rate risk in the event of a disaster. Still, this downside risk should be dampened, and

even more than fully offset, by hedgers’ desire for U.S. Treasuries during periods of financial

stress.

As the recent bank failures in the U.S. have made clear, higher interest rates matter not

just for exchange rate dynamics in the event of financial market stress, but may also serve as

the catalyst for the next disaster event. This underscores the pressing need for a flexible and

interpretable approach with which to track currencies’ ever-evolving exposure to disaster risk,

which the signed quantile UIP framework I develop here provides.
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Appendix

A Model Solution

In the main text, I solved for optimal U.S. dollar bond holdings of speculators and hedgers. In

this section, I solve the rest of the model as follows. First, I setup and solve the U.S. and Foreign

household problems. Second, I state the market clearing conditions for bonds and goods. Third,

I input the equilibrium and market clearing conditions into household’s budget constraints until

I arrive at the net foreign asset flow demand equations (10) in each period.

Household Problem Setup:

Time is discrete, indexed by t, and there are 3 periods t ∈ {0, 1, 2}. Each country is populated

by a unit mass of households. Each period, the representative U.S. household is endowed with

YNT,t units of a country-specific non-tradable (NT) good and YH,t units of the U.S. tradable

(H) good. The setup is analogous for the foreign household.36 The U.S. household maximizes

its expected utility over consumption across the three periods:

E0[U(C0, C1, C2)] = θ0log(C0) + βE0[θ1log(C1)] + β2E0[θ2log(C2)] (A.1)

where Ct = [(CNT,t)
χt(CH,t)

at(CF,t)
ιt ]

1
θt and the preference parameters satisfy χt+ at+ ιt = θt.

While trade in goods is frictionless, financial markets are segmented such that U.S. house-

holds can trade only the U.S. bond and foreign households can trade only the foreign bond. Let

bH,t for t ∈ {0, 1} be the quantity of USD bonds held by U.S. households in each of the first

two periods and denote by R the gross U.S risk free rate in units of the NT good. Then, the

U.S. households’ budget constraints are given by:

YNT,0 + pH,0YH,0 = CNT,0 + pH,0CH,0 + pF,0CF,0 + bH,0 (A.2)

YNT,1 + pH,1YH,1 = CNT,1 + pH,1CH,1 + pF,1CF,1 + bH,1 −RbH,0 (A.3)

YNT,2 + pH,2YH,2 = CNT,2 + pH,2CH,2 + pF,2CF,2 −RbH,1, (A.4)

where I set as numeraire the non-tradable good in each country pNT,t = p∗NT,t = 1. I further

assume the law of one price for goods holds, pH,t = p∗H,tεt and pF,t = p∗F,tεt.

36The only difference is that financiers’ profits are rebated to foreign households to simplify the exposition.
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U.S. Household static problem:

L{CNT,t,CH,t,CF,t} = θtlog[(CNT,t)
χt(CH,t)

at(CF,t)
ιt ]

1
θt − ηt[Expt − CNT,t − pH,tCH,t − pF,tCF,t]

where Expt denotes the U.S. household’s optimal expenditure on consumption in period t

(solved for in the dynamic stage) and ηt is the Lagrange multiplier on the intratemporal portion

of the U.S. household’s budget constraint (from (A.2), (A.3), and (A.4)). Under the assumption

on U.S. household’s NT preference parameter (χt = YNT,t), market clearing implies χt = CNT,t.

Then, the first order conditions of the static problem are:

ηt = 1 and pH,tCH,t = at and pF,tCF,t = ιt (A.5)

Thus, U.S. household’s expenditure share on imports ιt is actually equal to their expenditure

on imports.

U.S. Household intertemporal problem:

Since the U.S. bond pays in the U.S. NT good, the U.S. Household’s intertemporal problem

solves for the optimal allocation of non-tradable consumption between periods:

L{CNT,t,CNT,t+1} = θtlog(Ct) + βEt[θt+1log(Ct+1)] + νt(ptYt +
1

R
pt+1Yt+1 − ptCt −

1

R
pt+1Ct+1)

where νt is the Lagrange multiplier on the intertemporal portion of the U.S. household’s budget

constraint (from (A.2), (A.3), and (A.4)) between the periods t and t + 1. Solving gives the

first order conditions (FOCs) below

χt

CNT,t
= νtpNT,t & βEt

[ χt+1

CNT,t+1

]
=

νtpNT,t+1

R
(A.6)

Recalling that χt = CNT,t and pNT,t = 1 ∀t, the first FOC implies νt = 1 such that the second

gives rise to the Euler equation:

1 = βR (A.7)

That is, because non-tradable consumption is risk-free and equal to households’ desired ex-

penditure share, households have no precautionary or consumption-smoothing motives and so

interest rates are driven by the rate of time preference, as in Gabaix and Maggiori (2015).

Foreign Household static and intertemporal problems:
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As discussed, the foreign household problem is analogous to the U.S. case, except that

foreign households are rebated the complete financial sector’s profits Πt for t ∈ {1, 2}:

max
{C∗

t ,b
∗
F,t}

E0[U(C∗
0 , C

∗
1 , C

∗
2 )] = θ∗0log(C

∗
0 ) + β∗E0[θ

∗
1log(C1)] + (β∗)2E0[θ

∗
2log(C

∗
2 )] (A.8)

such that Y ∗
NT,0 + p∗F,0Y

∗
F,0 = C∗

NT,0 + p∗H,0C
∗
H,0 + p∗F,0C

∗
F,0 + b∗F,0 (A.9)

Y ∗
NT,1 + p∗F,1Y

∗
F,1 +Π1 = C∗

NT,1 + p∗H,1C
∗
H,1 + p∗F,1C

∗
F,1 + b∗F,1 −R∗b∗F,0 (A.10)

Y ∗
NT,2 + p∗F,2Y

∗
F,2 +Π2 = C∗

NT,2 + p∗H,2C
∗
H,2 + p∗F,2C

∗
F,2 −R∗b∗F,1 (A.11)

where C∗
t = [(C∗

NT,t)
χ∗
t (C∗

F,t)
a∗t (C∗

H,t)
ξt ]

1
θ∗t with χ∗

t + a∗t + ξt = θ∗t , b
∗
F,t for t ∈ {0, 1} is quantity

of foreign currency bonds held by foreign households and R∗ is the gross foreign risk free rate.

Separating the problem into static and dynamic stages as before, the solution to the foreign

household problem can be summarized by the following FOCs:

χ∗
t = C∗

NT,t =⇒ η∗t = 1 , p∗F,tC
∗
F,t = a∗t , p∗H,tC

∗
H,t = ξt & 1 = β∗R∗ (A.12)

Market Clearing

As hedgers hold only U.S. bonds, home and foreign bond market clearing for t ∈ {0, 1} is:

qt + wt + bH,t = 0 and
−qt
εt

+ b∗F,t = 0 (A.13)

Goods market clearing in t ∈ {0, 1, 2} for tradables (A.14) and non-tradables (A.15)-(A.16) is:

YH,t = CH,t + C∗
H,t and Y ∗

F,t = CF,t + C∗
F,t (A.14)

YNT,t = CNT,t and Y ∗
NT,0 + (1− v0)X

∗
0 = C∗

NT,0 (A.15)

Y ∗
NT,1 + (1− v1)X

∗
1 + v0X̃

∗
1 = C∗

NT,1 and Y ∗
NT,2 + v1X̃

∗
2 = C∗

NT,2 (A.16)

As in Gabaix and Maggiori (2015) and Jiang (2021), I assume that the households pref-

erence parameter for non-tradable goods, in each country, is equal to the total supply of non-

tradables each period: χt = YNT,t, χ
∗
0 = Y ∗

NT,0+(1−v0)X
∗
0 , χ

∗
1 = Y ∗

NT,1+(1−v1)X̃
∗
1+v0X

∗
1 , and

χ∗
2 = Y ∗

NT,2+v1X̃
∗
2 . As will become more clear shortly, this assumption ensures households have

no consumption smoothing or precautionary motives, since their endowments of non-tradables

(in which their bonds are denominated) are risk-free and equal to their desired expenditure

share. This assumption allows me to isolate for how speculators and hedgers jointly deter-

mined exchange rates in financial markets, while relegating to the background the behavior of
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households.

Solving the Model

Beginning with the household’s budget constraints in each period (equations (A.2), (A.3),

and (A.4) and (A.9), (A.10), and (A.11)), substitute in the market clearing conditions for bonds

(A.13):

YNT,0 + pH,0YH,0 = CNT,0 + pH,0CH,0 + pF,0CF,0 − q0 − w0 (A.17)

YNT,1 + pH,1YH,1 = CNT,1 + pH,1CH,1 + pF,1CF,1 − q1 − w1 −R(−q0 − w0) (A.18)

YNT,2 + pH,2YH,2 = CNT,2 + pH,2CH,2 + pF,2CF,2 −R(−q1 − w1) (A.19)

Y ∗
NT,0 + p∗F,0Y

∗
F,0 = C∗

NT,0 + p∗H,0C
∗
H,0 + p∗F,0C

∗
F,0 +

q0
ε0

(A.20)

Y ∗
NT,1 + p∗F,1Y

∗
F,1 +Π1 = C∗

NT,1 + p∗H,1C
∗
H,1 + p∗F,1C

∗
F,1 +

q1
ε1

−R∗ q0
ε0

(A.21)

Y ∗
NT,2 + p∗F,2Y

∗
F,2 +Π2 = C∗

NT,2 + p∗H,2C
∗
H,2 + p∗F,2C

∗
F,2 −R∗ q1

ε1
(A.22)

where Πt+1 = qt(R−R∗ εt+1

εt
) 1
εt+1

+ (1− vt)X
∗
t R

εt
εt+1

+ vtX̃
∗
t+1 for t ∈ {0, 1}.

Next, substitute in the market clearing conditions for NT goods ((A.15) and (A.16)):

pH,0YH,0 = pH,0CH,0 + pF,0CF,0 − q0 − w0 (A.23)

pH,1YH,1 = pH,1CH,1 + pF,1CF,1 − q1 − w1 −R(−q0 − w0) (A.24)

pH,2YH,2 = pH,2CH,2 + pF,2CF,2 −R(−q1 − w1) (A.25)

p∗F,0Y
∗
F,0 = (1− v0)X

∗
0 + p∗H,0C

∗
H,0 + p∗F,0C

∗
F,0 +

q0
ε0

(A.26)

p∗F,1Y
∗
F,1 +Π1 = (1− v1)X

∗
1 + v0X̃

∗
1 + p∗H,1C

∗
H,1 + p∗F,1C

∗
F,1 +

q1
ε1

−R∗ q0
ε0

(A.27)

p∗F,2Y
∗
F,2 +Π2 = v1X̃

∗
2 + p∗H,2C

∗
H,2 + p∗F,2C

∗
F,2 −R∗ q1

ε1
(A.28)

Next, plug in the market clearing for T goods (A.14), household FOCs (A.5) and (A.12), and

the law of one price. Then, the t = 0 conditions (equations (A.23) and (A.26)) can each be

reduced to:37

ε0ξ0 − ι0 = −q0 − w0 (A.29)

37since (1− v0)X
∗
0 = w0

ε0
in (A.26)
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The t = 1 conditions (equations (A.24) and (A.27)) can each be reduced to:38

ε1ξ1 − ι1 = −q1 − w1 +R(q0 + w0) (A.30)

And the t = 2 conditions (equations (A.25) and (A.28)) can each be reduced to:39

ε2ξ2 − ι2 = R(q1 + w1) (A.31)

Following Gabaix and Maggiori (2015), I make two additional assumptions to anchor the

exchange rate in the final period. This is done solely for ease of exposition; the assumptions

have no effect on exchange rate dynamics in the model, as pointed out in section 2. First, I

assume that currency speculators intermediate and hedgers accommodate only new flows in

period t = 1 and so wait until t = 2 to unwind their t = 0 currency positions. In effect, this

implies that households’, who can now be viewed as long-term investors, stocks of bonds in t

= 1 arising from t = 0 flows are held passively until period t = 2.40 This adjusts the t = 1

flow demand equation (A.30) to ε1ξ1 − ι1 = −q1 − w1 and the t = 2 flow demand equation

(A.31) to ε2ξ2 − ι2 = R(q1 +w1) +R2(q0 +w0). Second, I assume that t = 2 is the “long run”

period, which lasts T-times as long as the first two periods, such that the t = 2 flow demand

equation (A.31) becomes T (ε2ξ2 − ι2) = R(q1 +w1) +R2(q0 +w0).
41 In effect, speculation and

hedging behavior in the currency market is assumed to be very small relative to trade in the

goods market in the long run. Dividing through by T and letting T → ∞, one can now write

the US net foreign asset flow demand equations in each period as:

ε0ξ0 − ι0 = −q0 − w0 ε1ξ1 − ι1 = −q1 − w1 ε2ξ2 = ι2 (A.32)

Thus, the long run exchange rate is the exchange rate under financial autarky and is determined

solely by fundamentals—countries relative import shares—while short run exchange rates are

determined both by fundamentals as well as financial frictions.

Finally, substituting speculators’ and hedgers’ optimal holdings of USD bonds, (3) and (6),

into the net foreign asset equations in (A.32), one can solve for the equilibrium exchange rate

38substitute the definition of Π1 into (A.27)
39substitute the definition of Π2 into (A.28)
40As a result, financial sector profits at t = 1, Π1, are not channelled to households until t = 2
41The T multiplies only the left-hand-side since interest income from previous lending/borrowing is channelled

to households at the start of the period while trade in goods occurs evenly throughout the long run period.
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in each period. Beginning with the final period, we have

ε2 =
ι2
ξ2
. (A.33)

For the middle period, the exchange rate is solved as a function of Γ1 and λ1(Γ1):

ε1 =
ι1 +

1
Γ1

R∗

R E1[ε2]

ξ1 +
1
Γ1

+
λ1E1[X̃∗

2 ]

λ1E1[X̃∗
2 ]/X

∗
1+1

=
ι1 +

1
Γ1

R∗

R E1[
ι2
ξ2
]

ξ1 +
1
Γ1

+
λ1E1[X̃∗

2 ]

λ1E1[X̃∗
2 ]/X

∗
1+1

(A.34)

where the second equality uses the conditional expectation of (A.33) as E1[ε2].

Similarly, the first period exchange rate is given by

ε0 =
ι0 +

1
Γ0

R∗

R E0[ε1]

ξ0 +
1
Γ0

+
λ0E0[X̃∗

1 ]

λ0E0[X̃∗
1 ]/X

∗
0+1

(A.35)

where, from (A.34), the conditional expectation of Γ1 and λ1(Γ1) affect ε0 through E0[ε1].

B Model Proofs

Lemma 1 Proof:

First, let ∂λ1
∂Γ1

→ 0 such that the indirect effect in (12) tends to 0 as well.42 Thus, the ∂ε1
∂Γ1

term

in (15) is now composed only of the direct effect. Notice that the second term in (15), 1
Γ1

∂ε1
∂Γ1

, is

proportional to 1
Γ3
1
while the first term in (15) is proportional to 1

Γ2
1
. Thus, for sufficiently large

Γ1, the first term will dominate. Then, if the U.S. interest rate is sufficiently high, R > R∗ Et[ε2]
ε1

,

then by (14) q1 > 0 and by (15) ∂q1
∂Γ1

< 0. Similarly, if the foreign interest rate is sufficiently

high, R < R∗ Et[ε2]
ε1

, then by (14) q1 < 0 and by (15) ∂q1
∂Γ1

> 0. ■

Lemma 2 Proof:

Assume that R > R∗ Et[εt+1]
εt

. By (14), this implies that qt > 0, which, by market clearing (10)

implies that ιt − εt > wt, where I have set ξ = 1 without loss of generality. Rearranging gives

ιt
εt
−1 > wt

εt
. Setting t = 1, we have the direct effect ι1−R∗

R E1[ε2](1+w1/ε1) > ι1−R∗

R E1[ε2](
ι1
ε1
) =

ι1[1− R∗

R
E1[ε2]
ε1

] > 0, where the first > comes from inputting ιt
εt
−1 > wt

εt
and the second > comes

from the initial assumption of R > R∗ Et[εt+1]
εt

. From ι1[1− R∗

R
E1[ε2]
ε1

] > 0 we see that the direct

effect’s magnitude in this case is increasing in R−R∗ E1[ε2]
ε1

. A similar procedure gives the result

for the case R < R∗ Et[εt+1]
εt

. ■

42I abstract away from hedgers since we are focused for now on speculators’ direct effect.
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Corollary 1 Proof:

Corollary 1 includes two claims. First, under ingredient 3, we have that R∗
0 > R0 ⇐⇒ q0 > 0.

By (14), since Γ0 = ΓL > 0 we have that R∗
0 > R0 ⇐⇒ E0

[
R∗

0
ε1
ε0

− R0

]
> 0, which holds

unconditionally. As the probability of a disaster tends to 0, p → 0, we have E0[Γ1] → ΓL,

and the unconditional expected return tends to the expected return conditional on ND. The

converse proof (where R∗
0 < R0 is proved analogously). See the proof of Corollary 2 for a proof

when p > 0. ■

I prove the second claim of Corollary 1 in Prediction 1’s proof, see below.

Prediction 1 Proof:

In (A.35), (A.34) and (A.33) with ξ = 1, to ensure the result is not driven by changes in

household preference parameters, I assume ι0 = ι1 = ι2 = ι and is deterministic. From (A.35),

(A.34), the t = 1 disaster state exchange rate, εD1 and the exchange rate at t = 0, ε0, are

E0[ε1| Γ1 = ΓH ] ≡ εD1 =
ι(1 + 1

ΓH

R∗

R )

1 + 1
ΓH

and ε0 =

ι+ 1
ΓL

R∗

R

[
ι+ιR

∗
R

1
ΓL

1+ 1
ΓL

]
1 + 1

ΓL

εD1 is the t = 1 exchange rate as defined in (A.34) with Γ1 = ΓH .43 ε0 is as defined in (A.35) with

Γ0 = ΓL and with E0[Γ1] = ΓL since the disaster probability is assumed near zero, formally:

p → 0. In both cases, I have set wt = 0 to study exchange rate dynamics without hedgers,

whose impact will be taken into account in prediction 2.

Thus, prediction 1 can be rewritten as R∗ > R =⇒ εD1
ε0

R∗

R < 1. The second inequality can

be rewritten as:

1

ΓHΓ2
L

[(R∗

R

)2
[Γ2

L + 2ΓL − ΓH ] +
R∗

R
[ΓHΓ2

L + ΓH + ΓHΓL − ΓL] + [−Γ2
L − ΓHΓL − ΓL]

]
< 1

Notice that when R∗

R = 1, the left-hand-side (LHS) of this inequality reduces to 1:
εD1
ε0

R∗

R = 1.

Consider now R∗

R = 1 + η > 1 such that η > 0 is the interest rate differential. Relative to the

R∗

R = 1 case, R∗

R = 1+ η implies the LHS of the inequality grows by 1
ΓHΓ2

L
{(η2+2η)[Γ2

L+2ΓL−

ΓH ] + η[ΓHΓ2
L + ΓH + ΓHΓL − ΓL]}. Thus, the condition R∗ > R =⇒ εD1

ε0
R∗

R < 1 is satisfied if

and only if

η > 0 =⇒ (η2 + 2η)[Γ2
L + 2ΓL − ΓH ] + η[ΓHΓ2

L + ΓH + ΓHΓL − ΓL] < 0

43I also can define εND
1 as the t = 1 exchange rate as defined in (A.34) with Γ1 = ΓL, which will be useful to

prove the second claim of Corollary 1.
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which can be rewritten as

η > 0 =⇒ A(ΓL,ΓH , η) ≡ Γ2
L[2 + η] + ΓL[3 + 2η] + ΓH(−1− η) + ΓLΓH [ΓL + 1] < 0

To understand this result, notice that for a given η > 0, whether this condition is satisfied

depends on the values of ΓH and ΓL. The impact of changing ΓL is summarized by:

∂A(ΓL,ΓH , η)

∂ΓL
= 2ΓL(2 + η) + 3 + 2η + 2ΓLΓH + ΓH > 0

∂2A(ΓL,ΓH , η)

∂Γ2
L

= C(ΓH , η) > 0

The always positive first derivative implies that decreasing ΓL makes satisfying the condition

A(ΓL,ΓH , η) < 0 easier for η > 0. Put differently, ΓL ↓ =⇒ εD1
ε0

R∗

R ↓. Furthermore, as the first

derivative is increasing in η and ΓH , larger interest rate differentials or more extreme disaster

state funding market shocks increase the responsiveness of A(ΓL,ΓH , η) ↓ to ΓL ↓, making the

condition easier to satisfy. Similarly, the positive second derivative implies that further decreases

in ΓL lead to progressively larger falls
εD1
ε0

R∗

R , again making it easier to satisfy A(ΓL,ΓH , η) < 0.

The impact of changing ΓH is summarized by:

∂A(ΓL,ΓH , η)

∂ΓH
= (−1− η) + Γ2

L < 0 ⇐⇒ Γ2
L < (1 + η)

∂2A(ΓL,ΓH , η)

∂Γ2
H

= 0

Thus, when the funding market is sufficiently liquid in t = 0, as compared to the interest rate

differential (Γ2
L < R∗

R ), an increase in disaster-state funding market illiquidity in t = 1, ΓH ↑,

leads to a larger disaster state depreciation and
εD1
ε0

R∗

R ↓. This makes satisfying A(ΓL,ΓH , η) < 0

easier for η > 0. Furthermore, as the first derivative is increasing in η and decreasing in

ΓL, larger interest rate differentials and lower funding market liquidity in t = 0 increase the

responsiveness of A(ΓL,ΓH , η) ↓ to ΓH ↑, making the condition easier to satisfy. In addition, as

the second derivative is zero, there are no decreasing gains to
εD1
ε0

R∗

R ↓ from increasing ΓH that

would make A(ΓL,ΓH , η) < 0 more difficult to satisfy.

In addition to this intuition, the condition η > 0 =⇒ A(ΓL,ΓH , η) < 0 can be rewritten

in two illuminating ways:

η > 0 =⇒ ΓH >
Γ2
L(2 + η) + ΓL(3 + 2η)

1 + η − Γ2
L − ΓL

η > 0 =⇒ ΓL <
−ΓH − 2η − 3 +

(
(ΓH + 2η + 3)2 + 4ΓH(1 + η)(2 + η + ΓH)

)
2(2 + η + ΓH)

which highlight that ΓH must be sufficiently high and ΓL must be sufficiently low for the

exchange rate depreciation of the high-interest-rate currency to more than offset the magnitude
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of the interest rate differential.

The final comparative static captures the impact of changing η > 0 for fixed ΓH and ΓL

and is summarized by:

∂A(ΓL,ΓH , η)

∂η
= Γ2

L + 2ΓL − ΓH < 0 ⇐⇒ ΓH > Γ2
L + 2ΓL

Thus, when disaster state funding market frictions are sufficiently large relative to normal times,

(ΓH > Γ2
L + 2ΓL), a higher interest rate differential implies a larger disaster state depreciation

of the high-interest-rate foreign currency and thus a larger fall in the carry trade return,
εD1
ε0

R∗

R .

In this case, η ↑ makes satisfying A(ΓL,ΓH , η) < 0 easier.

As a brief aside, notice that, if the disaster does not materialize in t = 1, ε1 = εND
1 , then by

following the same procedure as above with εD1 = εND
1 , we arrive at the quantity A(ΓL,ΓL, η),

where the only difference is ΓH = ΓL. Thus, we can show that ∂A(ΓL,ΓL,η)
∂η = Γ2

L + 2ΓL − ΓL >

0 ⇐⇒ ΓL > 0, which is always true in this model. Thus, an increase in the interest rate

differential implies a higher expected return conditional on no disaster, formalizing the proof of

the second claim in Corollary 1.

Finally, to complete the proof, it is possible that the condition η > 0 =⇒ A(ΓL,ΓH , η) < 0

cannot be satisfied for ΓL > 0 and ΓH finite. This can be ruled out by a numerical example:

Let ΓH = 2 and ΓL = 0.01 and consider two cases, both of which satisfy A(ΓL,ΓH , η) < 0:

Case 1: R∗

R = 1.10
1.01 , a 9% interest rate differential. In this case,

εD1
ε0

= 0.87, indicating a 13%

disaster state depreciation of the high-interest-rate foreign currency in the disaster. The maps

to
εD1
ε0

R∗

R = 0.947, about a 5% loss on the carry trade. For context, these losses dwarf the

expected carry trade profits conditional on no-disaster:
εND
1
ε0

R∗

R = 1.0015, a 0.15% profit on the

carry trade. In addition, the results are unchanged if the probability of a disaster, as perceived

by speculators (and in reality) is non-zero. For example, setting p = 0.075, a 7.5% disaster

probability, we have
εD1
ε0

R∗

R = 0.952, still about a 5% loss on the carry trade in disasters, while
εND
1
ε0

R∗

R = 1.0056, a 0.56% profit on the carry trade in normal times.

Case 2: R∗

R = 1.05
1.01 , a 4% interest rate differential. In this case,

εD1
ε0

= 0.94, indicating a 6%

disaster state depreciation of the high-interest-rate foreign currency in the disaster. The maps

to
εD1
ε0

R∗

R = 0.976, about a 2% loss on the carry trade. For context, these losses dwarf the

expected carry trade profits conditional on no-disaster:
εND
1
ε0

R∗

R = 1.0007, a 0.07% profit on the

carry trade. In addition, the results are unchanged if the probability of a disaster, as perceived

by speculators (and in reality) is non-zero. For example, setting p = 0.075, a 7.5% disaster
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probability, we have
εD1
ε0

R∗

R = 0.978, still about a 2% loss on the carry trade in disasters, while
εND
1
ε0

R∗

R = 1.0026, a 0.26% profit on the carry trade in normal times.

Thus, for sufficiently small disaster probability p → 0, there exists a region, with a suffi-

ciently small ΓL and a sufficiently large ΓH , where, for a fixed positive interest rate differential

R∗

R , carry trade profits in disasters are negative
εD1
ε0

R∗

R < 1. In a subset of this region, these

losses grow as R∗

R ↑, as ΓL ↓ and as ΓH ↑. ■

Prediction 2 Proof:

With λ0 → 0, hedgers only hold USD in disaster states. Further, if p → 0, then ε0 unaffected

by disaster risk. Then, the result follows immediately from the hedgers’ indirect effect in (12)

since only E0[ε1| Γ1 = ΓH ] ≡ εD1 depends on λ1 and λ1 ↑ =⇒ εD1 ↓, a dollar appreciation. ■

Main Result Proof:

The proof for the paper’s main theoretical result combines elements of Predictions 1 and 2.

Formally, let p → 0 such that ε0 is unaffected by disaster risk, as explicitly shown in the proof

of prediction 1. Denote the exchange rate in a disaster that accounts only for the behavior

of speculators by εD,spec
1 , which is as defined in the proof of prediction 1 (although it was

denoted simply by εD1 in that case). Under a symmetric parameterization, with R∗,high
0 −RUS

0 =

RUS
0 −R∗,low

0 > 0, we know that:

∣∣∣ E0

[
R∗,high

0

εD,spec
1

ε0
−RUS

0

]
︸ ︷︷ ︸

<<0

∣∣∣ =
∣∣∣ E0

[
RUS

0

ε0

εD,spec
1

−R∗,low
0

]
︸ ︷︷ ︸

<<0

∣∣∣

That is, when accounting only for the behavior of speculators, the depreciation of a high-

interest-rate currency vis-à-vis the dollar in a disaster is equal in magnitude to the appreciation

of a low-interest-rate currency against the dollar in a disaster.

Next, denote by εD,all
1 the exchange rate in a disaster that accounts for the behavior of both

speculators and hedgers. Assuming λ0 → 0 such that hedgers only hold dollars in disasters,

we know from prediction 2 that εD,all
1 < εD,spec

1 , since the dollar appreciates in disasters due

to λ1 > 0 regardless of relative interest rates. Since p → 0, the spike in the liquidity yield in

disasters has no effect on ε0 such that:

∣∣∣ E0

[
R∗,high

0

εD,all
1

ε0
−RUS

0

] ∣∣∣ >
∣∣∣ E0

[
RUS

0

ε0

εD,all
1

−R∗,low
0

]∣∣∣
which completes the proof. ■
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Corollary 2 Proof:

Like the proof of the main result, this proof combines elements of Corollary 1, Prediction 1

and Prediction 2. First, Corollary 1 shows that, when taking into account only the behavior

of speculators, high-interest-rate currencies excessively appreciate conditional on no-disaster.

Denoting the exchange rate at t=0 and at t=1 conditional on no-disaster due to speculators as

εspec0 and εND,spec
1 , respectively, then under a symmetric parameterization with R∗,high

0 −RUS
0 =

RUS
0 −R∗,low

0 > 0, we have that:

∣∣∣ E0

[
R∗,high

0

εND,spec
1

εspec0

−RUS
0

]
︸ ︷︷ ︸

>0

∣∣∣ =
∣∣∣ E0

[
RUS

0

εspec0

εND,spec
1

−R∗,low
0

]
︸ ︷︷ ︸

>0

∣∣∣

As a brief aside, Corollary 1 was proven with p → 0, whereas this proof requires that p > 0. So,

consider the case where R∗
0 > R0 (the converse case is entirely analogous). From prediction 1,

the possibility of a disaster causes E0[ε1] ↓ and so E0

[
R∗

0
ε1
ε0
−R0

]
↓ such that E0

[
R∗

0
ε1
ε0
−R0

]
> 0

may not hold anymore, as was needed for the proof of corollary 1. However, ε0 also falls by

(A.35), with this fall proportional to 1
Γ0

R∗
0

R0
/1 + 1

Γ0
. Thus, for a sufficiently low Γ0 relative to

R∗
0

R0
, the fall in ε0 is larger than the fall in E0[ε1] such that R∗

0 > R0 =⇒ E0

[
R∗

0
ε1
ε0

− R0

]
>

0 =⇒ E0

[
R∗

0
ε1
ε0

−R0

∣∣∣ Γ1 = ΓL

]
> 0.

Again, consider two different exchange rates conditional on a disaster in period 1: εD,spec
1 ,

which accounts only the behavior of speculators in the disaster; and εD,all
1 , which additionally

accounts for the behavior of hedgers. From Prediction 2, we know that εD,all
1 < εD,spec

1 since

hedgers flight to the dollar generates a tendency for the dollar to appreciate in disasters (εD1 ↓).

From (A.35), we see that εD1 ↓ =⇒ E0[ε1] ↓ =⇒ ε0 ↓. Thus, εall0 < εspec0 . Since hedgers only

hold dollars conditional on a disaster at t = 1, then εND,all
1 = εND,spec

1 . Combining these two

facts with the expression for exchange rate dynamics conditional on no-disaster accounting only

for speculators, we see that:

∣∣∣ E0

[
R∗,high

0

εND,all
1

εall0

−RUS
0

] ∣∣∣ >
∣∣∣ E0

[
RUS

0

εall0

εND,all
1

−R∗,low
0

]∣∣∣
That is, there is a tendency for the dollar to depreciate conditional on no-disaster to compensate

for the dollar’s tendency to appreciate in disasters. It is worth noting the mechanics behind

this: R∗
0
εND,all
1

εall0
−R0 > R∗

0
εND,spec
1

εspec0
−R0 =⇒ qall0 < qspec0 , that is, the tendency for the dollar to

depreciate conditional on no disaster arises because speculators tilt their portfolios away from

USD (the dollar becomes the dominant funding currency for the carry trade). ■
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C Model Parameterization and Additional Simulations

In this section, I discuss how I simulate my model to produce exchange rate change log(ε1/ε0)

distributions. First, Table C.1 displays the parameterizations I use in the baseline simulation.

The interest rate differential is set to 9% (log(R∗/R) = log(1.1/1.01). In the table, the foreign

currency has the high-interest-rate, but I also simulate the model when the U.S. has the high-

interest-rate, in which case the interest differential is -9% (log(R∗/R) = log(1.01/1.1). I focus

for now, without loss of generality, on the case where R∗ > R.

Table C.1: Benchmark Model Parameterization

Parameter Value Description Target

β 0.99 U.S. Discount Factor 1% interest rate

β∗ 0.91 Foreign Discount Factor 10% interest rate

ΓL 0.01 Elasticity of Specs. Demand in ND Liquid Funding in ND

ΓH 2 Elasticity of Specs. Demand in D Illiquid Funding in D

λL 0 Liquidity Yield in ND Treasuries not special in ND

λH 0.05 Liquidity Yield in D Treasury liquidity spikes in D

p 0.075 Disaster Probability From Figure 7

ι = ξ 1 Import Share (relative to θ) Symmetric and neutral

X̃∗ 1 Hedgers’ Risky Asset Return Neutral

X∗ 0.5 Liquidation value of Risky Asset Sufficiently low vs. X̃

The extent of the disaster is captured by two state-dependent parameters, Γ and λ, where

ΓH >> ΓL > 0 and λH >> λL = 0. The probability of a disaster is set to 7.5%, which I

infer from the quantile regression results in Figure 8: interest differentials predict exchange rate

depreciations of high-yield currencies in excess of interest differentials up to between the 5th

and 10th percentile of the distribution. Finally, the remaining parameters including household

import shares and hedgers’ risky asset returns are chosen so as not to have an impact on the

results i.e. “neutral”. The liquidation value of hedgers’ risky asset is sufficiently low to ensure

hedgers’ constraint binds.

To output the exchange rate change log(ε1/ε0) distributions, I first calculate ε0, given the

parameters from Table C.1 using equation (A.35), which tailors equation (11) to the t = 0

exchange rate. Note that the expected exchange rate in t = 1 is a weighted average of the

exchange rate that prevails in a disaster and a non-disaster. Since relative interest rates are not

constant in practice, I generate foreign and domestic interest rates, to use in equation (A.35),

according to R∗ ∼ N(1.1, 0.005) and R ∼ N(1.01, 0.005), respectively. I then generate a vector
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of length n of simulated ε0 where each entry draws a new iid R∗ and R from their respective

normal distributions. This is what generates the hump-shaped modes in the simulated log(ε1/ε0)

distributions; with a constant R∗ and R, each modes’ mass would be concentrated at a single

value.

Unlike ε0, the value of ε1 depends on the realization of the disaster shock, which follows a

binomial distribution with success probability p = 7.5%. I simulated a vector of n realizations of

the disaster shock and use these to generate a vector of ε1s using (A.34), which tailors equation

(11) to the t = 1 exchange rate, conditional on the disaster realization. Interest rates are the

same as those in period 0; parameters depend on the realization of the disaster shock, as detailed

in Table C.1. Given length-n vectors for ε1 and ε0, I can output a vector of log(ε1/ε0). Setting

n = 1 million, I aggregate these exchange rate movements together into a histogram, generating

the exchange rate change distributions that appear in the main text.

Next, when discussing the asymmetry that arises due to the behavior of hedgers in the main

text, I mentioned that, when the U.S. interest rate is relatively high, if the interest differential

is not too wide, the spike in Treasury liquidity is large enough, and the elasticity of exchange

rates to liquidity yields is sufficiently high, hedgers’ effect can overcome that of speculators

and push the U.S. dollar to appreciate in the disaster. I show this below in Panel C.1b of

Figure C.1. Relative to Panel C.1a of Figure C.1, the interest differential goes from about -9%

(log(1.01/1.1) to -4% (log(1.01/1.05) and the spike in the liquidity yield in a disaster doubles

from λH − λL = 0.05 to 0.1. In this case, the disaster moves from the right-tail to the left-tail.
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Figure C.1: Simulated Exchange Rate Change Distribution due to Speculators and Hedgers

(a) R∗ −RUS > 0 (b) R∗ −RUS < 0

Note. In each panel of Figure C.1, I present 2 simulated distributions of exchange rate changes, log( ε1
ε0
), con-

structed by simulating the model and aggregating exchange rate movements into histograms. The first, in yellow,
accounts only the behavior of speculators (formally λ0 = λ1 = 0), and is the same as in Figure 3. The second,
in purple, accounts for the behavior of both speculators and hedgers. In panel C.1a, the foreign interest rate is
10% and the U.S. interest rate is 1%. In panel C.1b, the foreign interest rate is 1% and the U.S. interest rate
is 10%. The full parameterization is available in Appendix C. Exchange rate movements in the small mode in
each panel, labeled Γ1 = ΓH , refer to exchange rate movements conditional on a disaster, whereas movements
in the large mode, labeled Γ1 = ΓL, are movements conditional on no-disaster. Blue arrows indicate to how the
exchange rate change distribution changes when hedgers behavior is accounted for.

Finally, to generate the signed exchange rate change distributions, log(ε1/ε0)×sign(R∗−R),

I simply multiply the exchange rate change by 1 if R∗−R ≥ 0 and by −1 otherwise. Using this

procedure on the distributions in Figure C.1 yields those in Figure C.2 below. As discussed in

the main text, these results highlight that, when the U.S. interest rate is relatively low, disasters

can manifest in either tail of the signed exchange rate change distribution. If speculators’ effect

dominates, the disasters remain in the left-tail, as shown in Panel C.2a, implying a dampened

depreciation of the dollar in the disaster, while if hedgers’ effect dominates, the disasters move

to the right-tail, as shown in Panel C.2b, implying an appreciation of the high-yield U.S. dollar

in the disaster.
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Figure C.2: Simulated Signed Exchange Rate Change Distribution with Speculators and
Hedgers

(a) R∗ −RUS > 0 (b) R∗ −RUS < 0

Note. In each panel of Figure C.2, I present 2 simulated distributions of signed exchange rate changes, log( ε1
ε0
)×

sign(R∗
t −Rt), constructed by simulating the model and aggregating exchange rate movements into histograms.

The first, in yellow, accounts only the behavior of speculators (formally λ0 = λ1 = 0). The second, in purple,
accounts for the behavior of both speculators and hedgers. In panel C.2a, the foreign interest rate is 10% and
the U.S. interest rate is 1%. In panel C.2b, the foreign interest rate is 1% and the U.S. interest rate is 10%. The
full parameterization is available in Appendix C. Exchange rate movements in the small mode in each panel,
labeled Γ1 = ΓH , refer to exchange rate movements conditional on a disaster, whereas movements in the large
mode, labeled Γ1 = ΓL, are movements conditional on no-disaster. Blue arrows indicate to how the exchange
rate change distribution changes when hedgers behavior is accounted for.

D Data Sources and Summary Statistics

In this section, I discuss my data sources and provide some cross-sectional summary statistics.

As shown in Table D.1, interest rate and exchange rate data are from “Global Financial Data”.

Liquidity yields are from Du et al. (2018a). Speculator and hedger currency futures positions

data is from the Commodity Future Trading Commission. And finally, the VIX index is from

the Chicago Board of Exchange.
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Table D.1: Data Sources and Sample Period

Data Source Sample Period

3M Government Yields (i) Global Financial Data 1986M1—2020M12

Exchange Rates (e) Global Financial Data 1986M1—2020M12

3M Liquidity Yields (λ) Du et al. (2018a) 1991M4—2020M12

Speculator, Hedger Positions (PosS,H) Commodity Future Trading Commission 1993M1—2020M12

VIX Chicago Board of Exchange 1990M1—2020M12

Notes: All data correspond to end-of-month figures. Speculator and Hedger position available only for AUD, CAD,

CHF, EUR (DEM), GBP, JPY relative to USD. Liquidity yield data from Du et al. (2018a) and is unbalanced:

AUD and GBP start 1991M14; CAD starts 1991M6; NZD starts 1992M3; JPY starts 1992M9; CHF and SEK start

1994M2, NOK starts 1998M7 and EUR starts 1998M12.

In Table D.2, I provide a full-set of cross-sectional summary statistics—including the mean,

median, variance, skewness and kurtosis—for my main variables of interest. Exchange rate

skewness—a measure of asymmetric crash risk for currencies in disasters—and median exchange

rate movements—a measure of exchange rate dynamics conditional on no-disaster—are of par-

ticular interest for this paper.

My model from section 2 made two key predictions for exchange rate dynamics in disasters:

(1) high- (low-) interest-rate currencies tend to experience large depreciations (appreciations);

and (2) the U.S. dollar tends to appreciate against all other currencies. These effects can either

reinforce or offset one another depending on the sign of a country’s interest differential with the

U.S.. The two predictions are visible in Figure D.1, which plots the realized skewness of 3-month

exchange rate movements ∆e (Panel D.1a) and carry trade returns z (Panel D.1b) for each

currency in my sample vis-à-vis the dollar against each country’s average interest differential

against the U.S. (E[i∗−i]).44 A negatively skewed exchange rate change distribution implies the

foreign currency has tended to experience more extreme left-tail depreciations as compared to

extreme right-tail appreciatons. Similarly, a negatively skewed carry trade return distribution

implies carry trades long the foreign currency have tended to suffer more extreme left-tail losses

as compared to extreme right-tail gains.

The negative slope of the best-fit lines in Figure D.1 indicates that the distributions of

exchange rate movements and carry trade returns become more left-skewed as average interest

differentials relative to the U.S. increase. Consistent with Prediction 1, this suggests that high-

interest-rate currencies occasionally experience very large depreciations, whose magnitudes are

proportional to (average) interest differentials. At the same time, the negative intercept terms

44These values are taken from Table D.2
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Table D.2: Cross-Sectional Summary Statistics with U.S. dollar as Base Currency

AUD CAD CHF EUR GBP JPY NOK NZD SEK

Mean

i∗ − i 0.0066 0.0022 -0.0028 -0.0008 0.0039 -0.0044 0.0047 0.0083 0.0029
∆e 0.0004 0.0004 0.0060 0.0035 -0.0007 0.0048 -0.0012 0.0017 -0.0008
z 0.0072 0.0027 0.0031 0.0027 0.0033 0.0004 0.0037 0.0102 0.0021

PosS 0.0968 0.0121 -0.0830 0.0014 -0.0254 -0.1037 . . .
PosH -0.1561 -0.1109 0.1201 -0.0318 0.0163 0.1605 . . .
λ 4.272 6.213 8.633 5.511 2.753 8.221 3.993 -1.701 4.629

Median

i∗ − i 0.0060 0.0016 -0.0027 -0.0014 0.0022 -0.0033 0.0034 0.0070 0.0021
∆e 0.0034 -0.0004 0.0056 0.0033 0.0007 0.0019 0.0033 0.0077 0.0021
z 0.0098 0.0017 0.0015 0.0026 0.0052 -0.0029 0.0034 0.0142 0.0046

PosS 0.0946 -0.0003 -0.1314 0.0217 -0.0463 -0.1345 . . .
PosH -0.2049 -0.1296 0.2143 -0.0535 0.0663 0.1958 . . .
λ 3.202 4.082 7.298 4.297 1.642 6.288 2.995 0.956 4.219

Variance

i∗ − i 3.4e-5 1.3e-5 2.1e-5 1.9e-5 2.3e-5 2.2e-5 4.4e-5 5.1e-5 4.4e-5
∆e 0.0034 0.0013 0.0030 0.0029 0.0025 0.0033 0.0033 0.0033 0.0035
z 0.0035 0.0014 0.0031 0.0029 0.0026 0.0033 0.0033 0.0034 0.0035

PosS 0.0907 0.0627 0.0733 0.0534 0.0605 0.0705 . . .
PosH 0.1997 0.1199 0.1773 0.1080 0.1261 0.1224 . . .
λ 67.54 63.94 82.12 57.42 54.41 81.33 72.67 385.8 122.6

Skewness

i∗ − i 0.9030 0.8141 0.7424 0.7746 0.7958 -0.3256 0.8880 2.0618 0.8808
∆e -0.8330 -0.1022 0.002 -0.2044 -0.8218 0.3229 -0.6575 -0.2975 -0.9619
z -0.7260 -0.1553 0.0625 -0.1372 -0.6151 0.2679 -0.5276 -0.2019 -0.7371

PosS -0.1133 0.0837 0.2150 -0.2174 0.3213 0.2807 . . .
PosH 0.2310 0.0393 -0.3585 0.1935 -0.2975 -0.2244 . . .
λ 1.157 1.943 2.524 5.984 1.577 6.141 2.636 -2.314 1.448

Kurtosis

i∗ − i 3.874 3.515 3.588 3.540 2.954 1.939 3.298 9.091 4.094
∆e 7.190 5.951 3.253 3.343 6.693 3.829 5.057 4.422 6.373
z 6.523 5.702 3.128 3.156 6.070 3.621 4.645 4.141 5.273

PosS 1.855 1.937 1.978 2.268 2.349 1.860 . . .
PosH 1.775 1.805 1.889 2.096 1.989 1.767 . . .
λ 13.26 20.06 16.16 60.74 12.91 69.15 17.91 11.30 18.55

Notes: USD base summary statistics.

to these best-fit lines indicate that, controlling for average interest differentials, the distributions

of exchange rate movements and carry trade returns are left-skewed. That is, the U.S. dollar

carries significant upside risk against all currencies ceteris paribus, which is consistent with

Prediction 2. As a result, high-interest-rate currencies, such as the AUD, carry amplified risks

of large depreciations whereas low-interest-rate currencies, such as the CHF, see their upside

risks vis-à-vis the dollar dampened. In fact, the dollar, due to the relatively small gap between

U.S. and German interest rates, actually carries upside exchange rate risk against the low-

interest-rate euro.

In addition, my model made 2 predictions for exchange rate dynamics in normal times: (1)

high- (low-) yield currencies excessively appreciate (depreciate) relative to interest differentials;
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Figure D.1: Realized U.S. Exchange Rate and Carry Trade Skewness by Interest Differentials

(a) Skewness of Exchange Rate Movements
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(b) Skewness of Carry Trade Returns
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Note. Figure D.1 presents the unconditional skewness of 3-month exchange rate movements ∆et+1 = et+1−et
in Panel D.1a and of 3-month carry trade returns zt+1 = ∆et+1+ i∗− i in Panel D.1b for 9 currencies (AUD,
CAD, CHF, EUR, GBP, JPY, NOK, NZD, SEK) relative to the USD, plotted against each currencies’ average
interest differential with the U.S. E[i∗ − i]. et is the log dollar exchange rate defined such that an increase is
a depreciation of the USD while i∗ is the (log) foreign 3-month government bond interest rate and i is the
3-month U.S. Treasury rate. Data is monthly from 1986:M1 to 2020:M12.

Figure D.2: Median US Exchange Rate Movement, Carry Trade Return by Interest
Differentials

(a) Median Exchange Rate Movement
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(b) Median Carry Trade Return
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Note. Figure D.2 presents the unconditional median of 3-month exchange rate movements ∆et+1 = et+1−et
in Panel D.2a and of 3-month carry trade returns zt+1 = ∆et+1+ i∗− i in Panel D.2b for 9 currencies (AUD,
CAD, CHF, EUR, GBP, JPY, NOK, NZD, SEK) relative to the USD, plotted against each currencies’ average
interest differential with the U.S. E[i∗ − i]. et is the log dollar exchange rate defined such that an increase is
a depreciation of the USD while i∗ is the (log) foreign 3-month government bond interest rate and i is the
3-month U.S. Treasury rate. Data is monthly from 1986:M1 to 2020:M12.

and (2) the U.S. dollar depreciates against all other currencies. These two effects can either

reinforce or offset one another depending on the sign of a country’s interest differential with

the U.S.. The two predicitions are visible in Figure D.2, which plots the cross-sectional median

exchange rate movement ∆e (Panel D.2a) and carry trade return z (Panel D.2b) for each

currency in my sample vis-à-vis the dollar against each country’s average interest differential
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with to the U.S. (E[i∗ − i]). The positive slope of the best-fit lines in each panel indicate that

median appreciation of the foreign currency against the U.S. dollar increases as the foreign

country’s average interest rate relative to the U.S. rises. Furthermore, the positive intercept

terms of the best-fit lines in each panel indicate that, after controlling for (average) interest

differentials, the U.S. dollar tends to depreciate at the median, my proxy for conditional on no-

disaster. These effects reinforce one another when the U.S. interest rate is relatively low, e.g.

compared to Australia’s, and (partially) offset each other when the U.S. interest rate is relatively

high, e.g. compared to Switzerland’s. As a result, there are larger carry trade returns when

going long high-yield currencies and short the dollar, conditional on no-disaster, as compared to

returns when going long the dollar and short low-yield currencies. This is exactly the prediction

of Corollary 2.

E The Signed Quantile UIP Regression: A Proof

In this section, I provide a proof for the signed quantile UIP regression from Proposition 1:

∆et+1 × sign(i∗t − it) = βτ
0sign(i

∗
t − it) + βτ

1 (i
∗
t − it)× sign(i∗t − it) + uτt+1 (E.1)

Specifically, I show that βτ
1 measures the quantile marginal effect of the interest differential i∗t−it

on exchange rate movements ∆et+1 at the τ th quantile of the conditional signed exchange rate

change distribution ∆et+1×sign(i∗t −it)|XS
t , where the conditioning vector XS

t when estimating

E.1 includes the intercept sign(i∗t − it) and the signed interest differential (i∗t − it)×sign(i∗t − it).

As shown in the simulations in section 3, this signed exchange rate change distribution is the

correct distribution with which to analyze exchange rate dynamics in light of my model. I will

make this clear formally below. Importantly, the proof that follows can be easily generalized to

include other conditioning variables in XS
t , such as the change in the U.S. Treasury liquidity

yield ∆λt+1, provided these too are interacted with the sign of the interest differential.

As a starting point, consider the signed UIP regression estimated by least squares:

∆et+1 × sign(i∗t − it) = β0sign(i
∗
t − it) + β1(i

∗
t − it)× sign(i∗t − it) + ut+1. (E.2)

For clarity, let Xt = {1, (i∗t − it)} and XS
t = {sign(i∗t − it), (i

∗
t − it) × sign(i∗t − it)}. Then,

the OLS-estimated marginal effects β̂ = {β̂0, β̂1} are given as the solution to the minimization
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problem:

β̂ = argmin{β∈R2}

T−1∑
t=1

[
(∆et+1 × sign(i∗t − it)− βXS

t )
2
]

= argmin{β∈R2}

T−1∑
t=1

[
(sign(i∗t − it))

2︸ ︷︷ ︸
1

(∆et+1 − βXt)
2
]

(E.3)

Thus, the marginal effects β̂ from estimating the signed UIP regression by OLS are identical to

those from estimating the traditional Fama (1984) UIP regression. In particular, β̂1 estimates

the marginal effect of the interest differential on the mean exchange rate movement. The reason

for this is that: (1) the loss-function is quadratic; and (2) both the dependent and independent

variables are interacted with the sign(i∗t − it) term.

Next, lets consider the quantile UIP regression without the sign transformation:

∆et+1 = βτ
0 + βτ

1 (i
∗
t − it) + uτt+1 (E.4)

The estimated quantile-regression marginal effects β̂τ = {β̂τ
0 , β̂

τ
1} are given as the solution to

the minimization problem:

β̂τ = argmin{βτ∈R2}

T−1∑
t=1

[
τ ∗ 1{∆et+1>βτXt} | ∆et+1 − βτXt |

+ (1− τ) ∗ 1{∆et+1<βτXt} | ∆et+1 − βτXt |
]

(E.5)

β̂τ measures the marginal effect of Xt on exchange rate movements ∆et+1 at the τ th quantile

of the conditional exchange rate distribution ∆et+1|Xt. In this case, the loss function weights

observations (by τ or 1− τ) based on whether or not the appreciation of the foreign currency is

sufficiently large (et+1 > βτXt or et+1 < βτXt). According to my model, however, this is not the

appropriate weighting scheme as it weights large appreciations of high-interest-rate currencies

(when i∗t > it) and large appreciations of low-interest-rate currencies (when i∗t < it) by the

same amount τ , provided they both satisfy (et+1 > βτXt). That is, the minimization problem

selects a single β̂τ
1 to explain exchange rate movements that ought not be grouped together.

For example, in my model, appreciations of high-yield currencies are due to speculators’ carry-

trading while appreciations of low-yield currencies are due to speculators’ unwinding of carry

trades.

The signed quantile UIP regression (E.1), on the other hand, corrects for this problem.

The estimated quantile-regression marginal effects, which I again denote by β̂τ = {β̂τ
0 , β̂

τ
1}, are
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given as the solution to the minimization problem:

β̂τ =argmin{βτ∈R2}

T−1∑
t=1

[
τ ∗ 1{∆et+1×sign(i∗t−it)>βτXS

t } | ∆et+1 × sign(i∗t − it)− βτXS
t |

+ (1− τ) ∗ 1{∆et+1×sign(i∗t−it)<βτXS
t } | ∆et+1 × sign(i∗t − it)− βτXS

t |
]

Factoring out the sign(i∗t − it) terms from within the absolute value, we arrive at:

β̂τ = argmin{βτ∈R2}

T−1∑
t=1

[
τ ∗ 1{∆et+1×sign(i∗t−it)>βτXS

t }

1︷ ︸︸ ︷
| sign(i∗t − it) | | ∆et+1 − βτXt |

+ (1− τ) ∗ 1{∆et+1×sign(i∗t−it)<βτXS
t } | sign(i

∗
t − it) |︸ ︷︷ ︸
1

| ∆et+1 − βτXt |
]

Thus, like in the OLS-estimated case above, the error-term is et+1−βτXt such that the quantile-

specific coefficients from estimating (E.1) capture the marginal effects of Xt on exchange rate

movements ∆et+1. This is because both the dependent and independent variables are interacted

with the sign(i∗t −it) term. However, unlike the OLS case, the conditioning distribution matters

since observations above (∆et+1×sign(i∗t−it) > βτXS
t ) or below (∆et+1×sign(i∗t−it) < βτXS

t )

the best fit line are weighted differently. That is, more specifically, βτ
1 measures the marginal

effects of Xt on exchange rate movements ∆et+1 at the τ th quantile of the conditional signed

exchange rate distribution ∆et+1×sign(i∗t−it)|XS
t . To provide an intuition for this distribution,

notice that the loss function can be rewritten as:

β̂τ = argmin{βτ∈R2}

T−1∑
t=1

[
τ ∗ 1{{∆et+1>βτXt | sign(i∗t−it)=1)∪(∆et+1<βτXt | sign(i∗t−it)=−1}} | ∆et+1 − βτXt |

+ (1− τ) ∗ 1{{∆et+1>βτXt | sign(i∗t−it)=−1)∪(∆et+1<βτXt | sign(i∗t−it)=1}} | ∆et+1 − βτXt |
]
(E.6)

In this case, βτ is estimated by weighting observations where the appreciation of the high-

interest-rate currency is sufficiently large (∆et+1 > βτXt and sign(i∗t −it) = 1) and observations

where the depreciation of the low-interest-rate currency is sufficiently large (∆et+1 < βτXt

and sign(i∗t − it) = −1) by the same amount τ . Similarly, it weights observations where

the depreciation of the high-interest-rate currency is sufficiently large (∆et+1 < βτXt and

sign(i∗t − it) = 1) and observations where the appreciation of the low-interest-rate currency is

sufficiently large (∆et+1 > βτXt and sign(i∗t − it) = −1), by the same amount 1− τ . Thus, this

weighting scheme accounts for the interest-rate symmetry of exchange rate movements predicted

by my model. ■
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Figure E.1: The U.S. Signed Quantile UIP Regression
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Note. Figure E.1 presents the same results as Figure 7, but with the estimated quantiles on the horizontal axis
spaced in proportion to their value. The black dashed line is the “UIP line”. Light and dark shaded regions
are 90% and 68% confidence intervals constructed using a block bootstrap with 500 bootstrap samples.

Finally, below I re-plot the marginal effects displayed in Figures 7, 8 and 10 in the main

text, but with the estimated quantiles on the horizontal axis spaced in proportion to their value,

rather than evenly spaced. These results highlight the relative rarity of the disaster state in the

data.
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Figure E.2: The State-Dependent Uncovered Interest Parity Condition
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Note. Figure E.2 presents the same results as Figure 8, but with the estimated quantiles on the horizontal
axis of each panel spaced in proportion to their value. The black dashed line is the “UIP line” in each panel.
Light and dark shaded regions in each panel are 90% and 68% confidence intervals constructed using a block
bootstrap with 500 bootstrap samples.
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Figure E.3: Interest Differentials, Treasury Liquidity Premia and Tail Exchange Rate
Dynamics

(a) Interest Rate Differential
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Note. Figure E.3 presents presents the same results as Figure 10, but with the estimated quantiles on the
horizontal axis of each panel spaced in proportion to their value. The black dashed line is the “UIP line” in
Panel E.3a and the “zero line” in Panel E.3b. Light and dark shaded regions are 90% and 68% confidence
intervals constructed using a block bootstrap with 500 bootstrap samples.

E.1 Details on the Block Bootstrap Procedure

In this section, I provide details on the block bootstrap procedure that I use to compute the

confidence intervals in this paper, which correct for heteroskedasticity and autocorrelation.

Following Adrian et al. (2022), I first split the panel with time-series length T into contiguous

overlapping blocks of length t. I then construct a bootstrap sample by randomly sampling s

of these blocks of length t, where s × t = T .45 Using the resulting panel bootstrap sample, I

re-estimate a given panel quantile regression specification, for example (24), at a given quantile

τ and output a new vector of marginal effects β̂τ
BS . Repeating this procedure x times produces

a distribution of β̂τ
BSs which can be used to construct confidence intervals around the marginal

effects estimated using the original panel β̂τ . In particular, I construct an 1 − α% two-sided

confidence interval around β̂τ as:

[β̂τ − Φ−1(1− α/2)× σ(β̂τ
BS), β̂

τ +Φ−1(1− α/2)× σ(β̂τ
BS)], (E.7)

where σ(β̂τ
BS) is the standard deviation of the distribution of β̂τ

BSs and Φ−1 is the inverse cdf of

the standard normal distribution. In my baseline, I use 2 non-overlapping blocks per bootstrap

sample i.e., s = 2. Figures E.4 and E.5 show that my results are similar if I set s = 3. Further, I

show in section F.3 that my results are robust to a parametric clustering method of computing

standard errors that account for heteroskedasticity and autocorrelation.

45Of note, the sample size of the resulting bootstrapped panel may differ slightly from the size of the original
panel since the sample is unbalanced. Thus, the bootstrapped sample may sample more or less missing values in
the original dataset.
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Figure E.4: The State-Dependent UIP Condition: Inference with Alternative Block Length

(a) USD
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Note. Figure E.4 is the analogue of Figure 8 but with confidence intervals constructed from a block bootstrap
procedure with a block length of T/3 rather than the T/2 used in the baseline. The remainder of the notes
in Figure 8 apply here as well.
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Figure E.5: Interest Differentials, Liquidity Premia and Tail Exchange Rate Dynamics with
Alternative Block Length

(a) Interest Rate Differential

-20

-15

-10

-5

0

5

0.005 0.01 0.025 0.05 0.1 0.3 0.5 0.7 0.9 0.95 0.975 0.99 0.995

Marginal Effects

(b) ∆ U.S. Treasury Liquidity Yield
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Note. Figure E.5 is the analogue of Figure 10 but with confidence intervals constructed from a block bootstrap
procedure with a block length of T/3 rather than the T/2 used in the baseline. The remainder of the notes
in Figure 10 apply here as well.

E.2 Details on the Fitted Exchange Rate Change Distribution Procedure

In this section, I discuss how I implement the procedure of Adrian et al. (2019) to output the

conditional exchange rate change distributions in Figure 11. For now, assume that the interest

differential is positive such that sign(i∗t −it) = 1. I discuss the case of sign(i∗t −it) = −1 shortly.

When sign(i∗t − it) = 1, the β̂τ s associated to i∗t − it × sign(i∗t − it) and ∆λt+1 × sign(i∗t − it)

from estimating (27) (which are displayed in Figure 10) measure the marginal effects of Xt,t+1 =

{i∗t − it,∆λt+1} on the τ th quantile ∆et+1. Thus, they can be used to predict the conditional

quantiles of the exchange rate change distribution as follows:

∆̂et+1
τ
|Xt,t+1 = β̂τXt,t+1, (E.8)

where, in Figure 11, I set Xt,t+1 = {i∗t − it,∆λt+1} = {1pp, 75bp}. I use this procedure to

output 7 conditional quantiles of ∆et+1, namely, the τ ∈ {0.005, 0.01.0.025, 0.3, 0.5, 0.7, 0.975}

quantiles. Next, I fit these empirical quantiles to the theoretical quantiles Qτ (µ, σ, α, ν) of

the skew-T distribution (Azzalini and Capitanio (2003)) by selecting parameters {µ, σ, α, ν} of

the skew-T to minimize the sum of squared deviations across quantiles between ∆̂et+1
τ
|Xt,t+1

and Qτ (µ, σ, α, ν). Once the four parameters of the skew-T distribution are selected, they can

be substituted into the pdf for the skew-T to output the conditional exchange rate change

distributions displayed in Panel 11a of Figure 11.

When sign(i∗t − it) = −1, as in Panel 11b of Figure 11, I adapt the above procedure as

follows. Since the coefficients at the τ th quantile for i∗t−it×sign(i∗t−it) and ∆λt+1×sign(i∗t−it)

in Figure 10 measure their marginal effects on the τ th quantile ∆et+1×sign(i∗t−it), they measure
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the marginal effects of i∗t − it and ∆λt+1 on the 1− τ th quantile ∆et+1 when sign(i∗t − it) = −1,

such that:

∆̂et+1
1−τ

|Xt,t+1 = β̂τXt,t+1 (E.9)

where, for symmetry, I set Xt,t+1 = {i∗t − it,∆λt+1} = {−1pp, 75bp}. I again use (E.9) to output

7 conditional quantiles τ ∈ {0.005, 0.01.0.025, 0.3, 0.5, 0.7, 0.975} of the exchange rate change

distribution. The remainder of the procedure is the same as the case where sign(i∗t − it) = 1,

and yields Panel 11b of Figure 11.
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F Additional Empirical Results and Robustness

F.1 The Quantile UIP Regression

To demonstrate the clear improvement of the signed quantile UIP regression over the standard

UIP relationship estimated by quantile regression (F.1) in capturing exchange rate movements

in disasters, I estimate the panel quantile UIP regression:

∆ej,t+1 = βτ
0 + βτ

1 (i
∗
j,t − ij,t) + f τ

j + uτj,t+1. (F.1)

The results are displayed in Figure F.1. There are a few things to highlight. First, notice

that negative marginal effects tend to appear in the left-tail for low-yield currencies such as the

JPY, USD while they tend to appear in the right-tail for high-yield currencies such as the GBP,

SEK and NZD. The reason is that, without the sign interaction, large appreciations of the base

currency ∆et+1 ↓ manifest in the left tail and large depreciations of the base currency ∆et+1 ↑

manifest in the right tail of the exchange rate distribution. Second, these marginal effects are

much smaller, less-precisely estimated and not present for all currencies as compared to those

coming from the signed quantile UIP regression from Figure 8.

The reason is that the quantile UIP regression does not account for the interest-rate symme-

try of exchange rate movements, an important feature of the data that arises due to speculators

in my model. A good case study is AUD, which tends to have a relatively high interest rate.

As a result, one would expect it to experience a large depreciation in a disaster, which would

manifest in the right tail. While we do see evidence of this, large negative marginal effects

are even more stark in the left-tail, indicating that interest differentials also predict the large

appreciations of AUD. When inspecting the AUD panel in Figure 8, we see all the large neg-

ative marginal effects are present in the left-tail, indicating that interest differential’s predict

the AUD to suffer large depreciations when its interest rate is relatively high and large appre-

ciations when its interest rate is relatively low. This highlights the key issue with the quantile

UIP regression: it allocates disaster-state exchange rate movements, which ought to be grouped

together, to different tails depending on the sign of the interest differential. The signed quantile

UIP regression corrects for this. Importantly, this is not a phenomenon unique to the AUD. We

see negative marginal effects, albeit smaller, in the opposite tail to what we would expect based

on each currencies’ average interest rate for the USD, GBP, NZD as well, not to mention the

improvement in terms of magnitude and precision of the estimated coefficients in the left-tail of
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Figure F.1: The State-Dependent UIP Condition Without sign(i∗j,t − it) Adjustment

(a) USD
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Note. Figure F.1 is the analogue of Figure 8 but without the sign(i∗j,t − it) interaction. Specifically, it
presents coefficient estimates from regression (F.1). The remainder of the notes in Figure 8 apply here as
well.
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Figure F.2: Interest Differentials, Liquidity Yields and Exchange Rates Without sign(i∗j,t − it)
Adjustment

(a) Interest Rate Differential
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(b) ∆ U.S. Treasury Liquidity Yield
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Note. Figure F.2 is the analogue of Figure 10 but without the sign(i∗j,t − it) interaction. Specifically, it
presents coefficient estimates from regression (F.2). The remainder of the notes in Figure 10 apply here as
well.

Figure 8 for all currencies.

∆ej,t+1 = βτ
0 + βτ

1 (i
∗
j,t − ij,t) + βτ

2∆λt+1 + f τ
j + uτj,t+1. (F.2)

Figure F.2 presents the quantile regression coefficients from estimating the standard UIP

relationship augmented with the U.S. Treasury liquidity yield (F.1). The main takeaway is that

the lef-tail marginal effects are significantly more-precisely estimated in Figure 10 than those

in Figure F.2, while the effects in the right-tail are (mildly) larger in Figure 10 relative to those

in Figure F.2. This again highlights the improvement of the signed quantile UIP approach.

F.2 Goodness of Fit of Signed Quantile UIP Regression

I measure the goodness of fit of the signed quantile UIP regression using the R1(τ) measure

developed by Koenker and Machado (1999):

R1(τ) = 1− V̂ (τ)

Ṽ (τ)
(F.3)

where V̂ (τ) is the sum of quantile-weighted absolute residuals from regression (24):

V̂ (τ) =min{βτ}

T−1∑
t=1

[
τ ∗ 1{∆et+1×sign(i∗t−it)>βτXS

t } | ∆et+1 × sign(i∗t − it)− βτXS
t |

+ (1− τ) ∗ 1{∆et+1×sign(i∗t−it)<βτXS
t } | ∆et+1 × sign(i∗t − it)− βτXS

t |
]

(F.4)
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and Ṽ (τ) is the sum of quantile-weighted absolute residuals from a model that includes only a

constant, which provides an estimate of the unconditional quantile. Like the R2 from a least-

squares estimated model, R1(τ) ∈ [0, 1]. While the definition of R1(τ) in (F.3) is analogous

to the definition of the standard R2—a ratio of explained variance to total variance—R1(τ) is

a local measures of goodness of fit at a particular quantile τ of the conditional distribution,

whereas R2 is a global measure of goodness of fit over the entire distribution, proxied by the

conditional mean.

In Figure F.3, I report the R1(τ)s for the panel signed quantile UIP regression (24) for each

base currency in my sample, and for each quantile I estimate. The main takeaway is that the

R1(τ) is largest in the left-tail, with a magnitude generally greater than or equal to 20%, imply-

ing that interest differentials explain the variation in exchange rate movements predominately

in disaster episodes. This value dwarfs the R1(τ)s at the center of the distribution, which are

essentially 0 at the median (the R2s in the OLS UIP regression are also about 0 (Fama (1984)),

as well as in the right-tail, where their magnitude is generally not larger than 10%.

Next, I evaluate the R1(τ) from the U.S.’s signed quantile UIP regression that additionally

includes the U.S. Treasury liquidity yield (27) and compare its value to the R1(τ) from estimat-

ing equation (24). The results are displayed in Figure F.4 and highlight that the inclusion of

the Treasury liquidity yield improves the goodness of fit of the model in both the left tail and

in right tail.
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Figure F.3: R1(τ): Goodness of Fit of Signed Quantile UIP Regression
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Note. Figure F.3 displays the goodness of fit measure R1(τ) for the signed quantile UIP regressions (24)
estimated in Figure 8.
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Figure F.4: Goodness of Fit Improvement with U.S. Liquidity Yield

]

0

.1

.2

.3

0.005 0.01 0.025 0.05 0.1 0.3 0.5 0.7 0.9 0.95 0.975 0.99 0.995
IRD only IRD and ΔLiq

R1(τ)

Note. Figure F.4 displays the goodness of fit (R1(τ)) of the U.S.’s signed quantile UIP regression with
(equation (27))and without (equation (24)) the U.S. Treasury liquidity yield.

F.3 Inference using a Time-Clustered Bootstrap Procedure

In this section, I show my results are robust to computing standard errors that account for

heteroskedasticity and autocorrelation by clustering by time period (Yoon and Galvao (2020)).

I implement this procedure again via the bootstrap, as in Chernozhukov et al. (2015). The

results are displayed in Figures F.5 and F.6.
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Figure F.5: The State-Dependent UIP Condition With Time-Clustered Standard Errors
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(j) NOK
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Note. Figure F.5 is the analogue of Figure 8 but with confidence intervals constructed using a time-clustered
bootstrap as in Chernozhukov et al. (2015) The remainder of the notes in Figure 8 apply here as well.
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Figure F.6: Interest Differentials, Treasury Liquidity Premia and Tail Exchange Rate
Dynamics With Time-Clustered Standard Errors

(a) Interest Rate Differential
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(b) ∆ U.S. Treasury Liquidity Yield
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Note. Figure F.6 is the analogue of Figure 10 but with confidence intervals constructed using a time-clustered
bootstrap as in Chernozhukov et al. (2015) The remainder of the notes in Figure 10 apply here as well.

F.4 Accounting for Interest Rate Expectations

In Hassan and Mano (2019), the authors argue that a share of the deviation from UIP that one

observes when estimating the UIP regression of Fama (1984):

∆ej,t+1 = β1(i
∗
j,t − it) + fj + uj,t+1, (F.5)

is due to the imperfect foresight of investors on the path of future interest rate differentials. To

see how this, eliminate the currency fixed effect fj from (F.5) by de-meaning each variable by

its time-series average, which I denote by xj =
1
T

∑
t xj,t for an arbitrary variable xj,t:

∆ej,t+1 −∆ej = β1[(i
∗
j,t − it)− (i∗j − i)] + uj,t+1 − uj , (F.6)

The UIP regression is meant to capture the marginal effect of interest differentials on expected

exchange rate movements under rational expectations (such that we proxy this expectation with

realized exchange rate movements), conditional on information available at date t. The issue is

that the inclusion of currency fixed effects, which, as shown in (F.6), requires information that

is not available ex-ante to investors, namely the time series average interest differential (i∗j − i).

When investors do not have perfect foresight about the path of future interest differentials

(or at least if the variance of their forecast errors for future interest differentials does not

converge in probability to the true variance), Hassan and Mano (2019) show that the marginal

effect β1 should be understood as the elasticity of realized exchange rate movements to interest

differentials as β1 becomes an inconsistent estimator of the elasticity of expected exchange rate

movements to interest differentials.
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To interpret the findings in terms of expected exchange rate movements, Hassan and Mano

(2019) show it is necessary to ensure all conditioning variables are known ex-ante to carry

traders and so they replace (i∗j − i) with a plausible value for investors’ beliefs for (i∗j − i) prior

to the implementation of the carry trade, denoted by (i∗j − i)
e
. Specifically, they use for (i∗j − i)

e

the time-series average interest differential prior to the start of the sample period. While they

continue to find deviations from UIP β1 > −1, these deviations are no longer larger than 0, as

they were before accounting for investors’ imperfect foresight on the path of interest differentials.

To ensure my results are not driven by the imperfect foresight of carry traders, I re-estimate

the signed quantile UIP regression with the Hassan and Mano (2019) fixed effect adjustment

(i∗j − i)
e
, which I estimate using monthly interest rate data from 1970:M1 to 1985:M12. To make

the notation less cumbersome, I denote sign(i∗j,t− it) as Sj,t, sign(i∗j − i) as Sj and sign(i∗j − i)
e

as Sj
e
. I then estimate:

∆ej,t+1 × Sj,t −∆ej × Sj = βτ
0 (Sj,t − Sj

e
) + βτ

1 ((i
∗
j,t − it)× Sj,t)− [i∗j − i)× Sj ]

e) + uτj,t+1 − uτj

(F.7)

The marginal effects for the signed interest differential are displayed in Figure F.7. Like

in Hassan and Mano (2019), the marginal effects for the interest differential are smaller in

magnitude when estimating specification F.7, but, we still see clear evidence, for most currencies,

that high-yield currencies are expected to suffer depreciations far in excess of interest differentials

disasters in the left-tail but are expected to excessively appreciate relative to interest differentials

at the median, that is, conditional on no-disaster.
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Figure F.7: State-Dependent UIP Accounting for Interest Rate Expectations

(a) USD
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Note. Figure F.7 is the analogue of Figure 8 but accounts for interest rate expectations, as emphasized
by Hassan and Mano (2019), by estimating currency fixed effects using interest rate data from 1970:M1 to
1985:M12. Specifically, it displays coefficients from estimating (F.7). Remainder of notes from Figure 8
apply here.
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Figure F.8: Interest Differentials, U.S. Liquidity Yields and Exchange Rates

(a) Interest Rate Differential
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(b) Instrumented ∆ U.S. Treasury Liquidity Yield
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Note. Figure F.8 is the analogue of Figure 10, but instruments the change in the U.S. Treasury liquidity
yield with the change in the VIX. Confidence intervals are constructed via a time-clustered bootstrap. The
remainder of the notes in Figure 10 apply.

F.5 Treasury liquidity and the VIX: An Instrumental Variable Approach

In this section, I highlight the causal impact of spikes in Treasury liquidity on exchange rate

dynamics using an instrumental variable approach. Because the U.S. Treasury liquidity yield

is measured as the deviation from covered interest parity, which is defined as a function of

spot and forward exchange rates, the effect of Treasury liquidity yields on exchange rates may

simply reflect a correlation. Since spikes in the Treasury liquidity yield in my model generate

a flight to the dollar by hedgers, which causes the dollar to appreciate, I address this concern,

following Engel and Wu (2018), by instrumenting the change in the Treasury liquidity yield

with the change in the VIX, an index that measures volatility in U.S. equity markets, ensuring

it is not mechanically related to exchange rate movements. Further, the VIX is a measure of

global uncertainty, and, as argued by Engel and Wu (2018), has an effect on bilateral exchange

rate movements only through its effect on the relative liquidity yield on dollar bonds.

The ∆VIX is also highly relevant as an instrument for ∆Liq, with an F-statistic of excluding

it as an instrument in the first-stage regression of 100 (that is, a t-statistic of 10), which is far

larger than the rule-of-thumb cut-off value of 10 advocated for by Stock and Yogo (2002).

The results for the second stage of the regression are displayed in Figure F.8. First, the

marginal effects associated to the interest differential are little changed relative to the baseline

in Figure 10. Second, the instrumented liquidity yield’s marginal effects are largest in the tails,

as they are in Figure 10. The magnitude of the instrumented effects, though, is considerably

larger, and there are even significant effects in the center of the distribution. In all, these

findings point to a causal relation between the liquidity yield on U.S. Treasuries and exchange

rate dynamics in disasters.
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F.6 Exchange Rate Dynamics and Financiers’ Currency Positions

In this section, I provide further supportive evidence for the tight link between exchange rate

dynamics and the portfolio adjustments by speculators and hedgers.

First, Figure F.9 highlights the strong correlation between exchange rate movements and

changes in speculators positions. Specifically, when the high-yield foreign currency depreciates,

speculators unwind their positions in the high-yield foreign currency. This is particularly true

in the left-tail, which holds the largest depreciations (appreciations) of high- (low-) yield cur-

rencies and speculators’ largest decreases (increases) in their positions in the high- (low-) yield

currency.46

Next, Figure F.10 shows that changes in speculators’ and hedgers’ currency positions are

highly inversely correlated with one another. This is because speculators and hedgers trade

with each other in currency markets. The correlation is not perfect because there is a smaller

third set of small, retail speculative investors who do not meet the reporting requirements of

the CFTC. You can think of these less-sophisticated investors as the households of my model.

The trading of speculators and hedgers in currency markets has important implications for

the behavior of exchange rates in disasters. In Figure F.11, I re-estimate the baseline signed

quantile portfolio-flow regression for speculators but augment it with the U.S. Treasury liquidity

yield ∆λj,t+1×sign(i∗j,t−it). There are a couple things to point out. First, the left-tail effects for

the signed interest differential are essentially unchanged: greater interest differentials predict

a larger unwinding of carry trades by speculators in disasters. Second, we see that interest

differentials also seem to have an effect in the right-tail, when conditioning also on the liquidity

yield. This may be due to the fact that speculators must at least partially accommodate hedgers’

flight to the more-liquid dollar in disasters. We see this in Panel F.12. In both the left and right

tails, a greater liquidity yield on U.S. Treasuries induces speculators to increase their holdings

of the foreign currency and decrease their holding of the U.S. dollar. This is because they

accommodate hedgers’ flight to the dollar, which they are happy to do since these agents value

pecuniary returns (CIP deviations), which widen when the non-pecuniary liquidity yield, which

hedgers’ value, rises. Interestingly, speculators’ seem more willing to accommodate hedgers’

flight to the dollar in the right-tail, suggesting that in many disaster outcomes, it is households

and smaller retail investors who accommodate hedgers’ flight.

46Since both the exchange rate movement and changes in speculator positions are interacted with sign(i∗j,t− it)
in Figure F.9, there is no effect from the sign(i∗j,t − it) terms other than putting disasters and carry-trade
unwindings in the left tail.
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Figure F.9: Correlation between Exchange Rate Changes and Speculator Changes

(a) AUD

Δet+1 ΔPosS
t+1 ρ = 0.54

-.4
-.2

0
.2

.4

-.2
-.1

0
.1

.2

1995m1 2000m1 2005m1 2010m1 2015m1 2020m1

(b) JPY

Δet+1 ΔPosS
t+1 ρ = 0.52

-.4
-.2

0
.2

.4

-.1
-.0

5
0

.0
5

.1
1995m1 2000m1 2005m1 2010m1 2015m1 2020m1

(c) GBP

Δet+1 ΔPosS
t+1 ρ = 0.49

-.4
-.2

0
.2

.4

-.1
5

-.1
-.0

5
0

.0
5

1995m1 2000m1 2005m1 2010m1 2015m1 2020m1

(d) EUR

Δet+1 ΔPosS
t+1 ρ = 0.50

-.3
-.2

-.1
0

.1
.2

-.1
-.0

5
0

.0
5

.1

1995m1 2000m1 2005m1 2010m1 2015m1 2020m1

(e) CAD

Δet+1 ΔPosS
t+1 ρ = 0.51

-.4
-.2

0
.2

.4

-.1
-.0

5
0

.0
5

.1

1995m1 2000m1 2005m1 2010m1 2015m1 2020m1

(f) CHF

Δet+1 ΔPosS
t+1 ρ = 0.62

-.4
-.2

0
.2

.4

-.1
-.0

5
0

.0
5

.1

1995m1 2000m1 2005m1 2010m1 2015m1 2020m1

Note. Figure F.9 shows the time series correlation between ∆ej,t+1 × sign(i∗j,t − it) in navy blue and
∆PosSt+1 × sign(i∗j,t − it) in maroon. ρ refers to the correlation coefficient.
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Figure F.10: Correlation between Speculators’ and Hedgers’ Position Changes

(a) AUD
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Note. Figure F.10 shows the time series correlation between ∆PosSt+1 × sign(i∗j,t − it) in navy blue and
∆PosHt+1 × sign(i∗j,t − it) in maroon. ρ refers to the correlation coefficient.
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Figure F.11: Speculators Unwind Carry Trades While Accommodating Hedgers’ Dollar Flight

(a) Interest Rate Differentials
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Note. Figure F.11 builds on the results displayed in Panel 9b of Figure 9 by augmenting the regression with
∆λj,t+1 × sign(i∗j,t − it). The remainder of the notes associated with Panel 9b of Figure 9 apply here as
well.

Figure F.12: Hedgers Fly-to-Dollar While Accommodating Speculators’ Deleveraging

(a) Interest Rate Differentials
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Note. Figure F.12 displays the results from same regression estimated for Figure 12, but now also shows the
effects of the interest differential. The same notes as in Figure 12 apply here.

Finally, Figure F.12 highlights that while hedgers’ fly to the dollar in disasters, they ac-

commodate speculators’ carry trade unwindings.

F.7 Exchange Rate Dynamics and the VIX

In this section, I highlight challenges associated with using measures of global financial market

stress, namely the VIX index, for understanding the direction of exchange rate movements in

disasters. To do so, I consider two potential specifications. The first, equation (F.8), is akin to
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Figure F.13: Financial Market Distress and Exchange Rates

(a) ∆VIX’s Effect on High-Yield Currency
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Note. Figure F.13 presents panel quantile regression coefficients for the signed change in the
VIX on the exchange rate change in Panel F.13a from estimating (F.8) and on the signed ex-
change rate change in Panel F.13b from estimating (F.9), respectively, with the USD as the
base (domestic) currency vis-à-vis 9 major currencies from 1990:M1 to 2020:M12. Quantiles τ =
{0.005, 0.01, 0.025, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.975, 0.99, 0.995} range along the horizontal axis
in each panel. Red error bars are 90% confidence intervals constructed using a block bootstrap with 500
bootstrap samples.

the specification used in Brunnermeier et al. (2009):47

∆ej,t+1 = βτ
0 + βτ

1 (∆V IXt+1)× sign(i∗j,t − iUS
t ) + f τ

j + uτj,t+1 (F.8)

The key feature of this specification is that ∆ej,t+1 is not interacted with the sign of the interest

differential while ∆V IXt+1 is. Thus, βτ
1 captures the marginal effect of an increase in the VIX

on the appreciation of the foreign currency when the foreign currency has the high interest rate

(i∗j,t − iUS
t > 0) is positive and the depreciation of the foreign currency when it has the low

interest rate (i∗j,t − iUS
t < 0). In other words, βτ

1 measures the effect of an increase in the VIX

index on the appreciation of the high-interest-rate currency.

On the other hand, the specification in (F.9) interacts both the exchange rate movement

and the VIX with the sign of the interest differential:

∆ej,t+1 × sign(i∗j,t − it) = βτ
0sign(i

∗
j,t − it) + βτ

1 (∆V IXt+1)× sign(i∗j,t − it) + f τ
j + uτj,t+1.

(F.9)

As a result, βτ
1 measures the marginal effect of an increase in the VIX index on the appreciation

of the U.S. dollar, regardless of interest differentials.

The marginal effects for the VIX, βτ
1 , from each specification are presented in Figure F.13

47Brunnermeier et al. (2009) use the carry trade return rather than the exchange rate movement as the
dependent variable.
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(specification (F.8) in Panel F.13a and specification (F.9) in Panel F.13b). The main takeaway

here is that, from these marginal effects, it is unclear which specification is the “correct” one.

The negative marginal effects in each panel imply that an increase in the VIX predicts both a

depreciation of the high-interest-rate currency (Panel F.13a) and an appreciation of the U.S.

dollar (Panel F.13b). Thus, it seems that financial market distress predicts large exchange rate

swings, but is unable to distinguish the direction of these swings. Conversely, the liquidity

yield-augmented signed quantile UIP regression estimated in Section 4.2 is able to predict this

direction: the interest differential captures the large depreciations of high-yield currencies in

disasters while the liquidity yield captures the large appreciations of the dollar.

F.8 Signed Quantile UIP Regression with Additional Signed Fixed Effect

The standard UIP regression of Fama (1984) includes currency fixed effects that control for un-

observed time-invariant confounding factors that may push the foreign currency to appreciate

against the domestic currency. In my signed quantile UIP regression, informed by my model,

I include a different type of fixed effect, one that controls for unobserved time-invariant con-

founding factors that may push the high-yield currency to appreciate and the low-yield currency

to depreciate. In this section, I include both of these types of fixed effects in tandem, in effect

controlling for two potential models for exchange rate dynamics, and show that my empirical

results are little changed. Specifically, I estimate:

∆ej,t+1 × sign(i∗j,t − it) = βτ
j × sign(i∗j,t − it) + βτ

1 (i
∗
j,t − it)× sign(i∗j,t − it) + f τ

j + uτj,t+1,

(F.10)

which replaces the intercept term from my baseline specification βτ
0 × sign(i∗j,t − it) with a

fixed-effect version βτ
j × sign(i∗j,t − it). To be explicit, f τ

j controls for factors that may push

the high-yield currency to appreciate and the low-yield currency to depreciate, since it is not

interacted with the sign(i∗j,t−it) while the dependent variable is, while β
τ
j ×sign(i∗j,t−it) controls

for factors that may push the foreign currency to appreciate against the domestic currency.

The results are displayed in Figure F.14 and highlight that my results are robust to including

this alternative type of fixed effect. I also show the remainder of my results are robust to

additionally controlling for this signed fixed effect. In Figure F.15, interest differentials continue

to predict carry trade unwindings in the left-tail. In Figure F.16, an increase in the U.S. Treasury

liquidity yield’s continues to predict a large appreciation of the dollar in disasters, as measured

at the FEaRS and FEaRH . And finally, liquidity yields continue to predict a flight to the dollar
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by hedgers’ in disasters, as shown in the right-tail of Figure F.17.
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Figure F.14: State-Dependent UIP Estimated with 2 Types of Fixed Effect
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Note. Figure F.14 is the analogue of Figure 8 but includes the signed fixed effect (equation (F.10)). The
remainder of the notes from Figure 8 apply here as well.
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Figure F.15: Speculator Carry Trade Unwindings with 2 Types of Fixed Effect
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Note. Figure F.15 is the analogue of Panel 9b, but additionally includes the signed fixed effect. The remainder
of the notes from Panel 9b apply here as well.

Figure F.16: Interest Differentials, U.S. Liquidity Yields and Exchange Rates with 2 Types of
Fixed Effect

(a) Interest Rate Differential
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(b) ∆ U.S. Treasury Liquidity Yield
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Note. Figure F.16 is the analogue of Figure 10, but additionally includes the signed fixed effect. The
remainder of the notes from Figure 10 apply here as well.
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Figure F.17: U.S. Liquidity Yields and Hedgers’ Flight to Safety with 2 Types of Fixed Effect
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Note. Figure F.17 is the analogue of 12, but additionally includes the signed fixed effect. The remainder of
the notes from Figure 12 apply here as well.

F.9 Disaster-State Exchange Rate Dynamics Excluding Lehman Collapse

In this section, I highlight that my results regarding exchange rate dynamics in disasters are

not driven by the largest disaster in my sample—the collapse of Lehman Brothers at the height

of the Global Financial Crisis in September 2008—which led to the largest spike in the U.S.

Treasury liquidity yield. I show this first for the interest-differential regressions in Figure F.18.

These results are nearly-identical to those in Figure 8. The same is true for the U.S. Treasury

liquidity yield in Figure F.19.
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Figure F.18: The State-Dependent Uncovered Interest Parity Condition ex. 2008:M9
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Note. Figure F.18 is the analogue of Figure 8 but excluding the Global Financial Crisis from 2008:M9.
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Figure F.19: Interest Differentials, U.S. Liquidity Yields and Exchange Rates ex. 2008:M9

(a) Interest Rate Differential
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(b) U.S. Liquidity Yield
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Note. Figure F.19 is the analogue of Figure 10 excluding the Global Financial Crisis from 2008:M9.

F.10 U.S. Exchange Rate Dynamics Country-by-Country

In this section, I estimate the time-series signed quantile UIP regression for the U.S. on a

country-by-country basis against the other countries/jurisdictions in my sample. I show that

my results are not tied just to the panel specifications, but are visible in the time-series for most

currencies in my sample.
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Figure F.20: The U.S. State-Dependent Uncovered Interest Parity Condition by-Country

(a) AUD
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(f) SEK
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(g) CHF
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(h) CAD
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(i) NOK
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Note. Figure F.20 is the analogue of Figure 8 country-by-country with the U.S. as the base currency. Standard
errors are computed via the block bootstrap and red error bars correspond to 68% confidence intervals.
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Figure F.21: U.S. Interest Differentials, Liquidity Yields and Exchange Rates by Country Pt. 1

(a) AUD: Interest Differentials
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(b) AUD: Liquidity Yields
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(c) JPY: Interest Differentials

-20

-15

-10

-5

0

5

0.005 0.01 0.025 0.05 0.1 0.3 0.5 0.7 0.9 0.95 0.975 0.99 0.995

Marginal Effects

(d) JPY: Liquidity Yields
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(e) GBP: Interest Differentials
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(f) GBP: Liquidity Yields
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(g) EUR: Interest Differentials
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(h) EUR: Liquidity Yields
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(i) CHF: Interest Differentials
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(j) CHF: Liquidity Yields

-30

-20

-10

0

10

0.005 0.01 0.025 0.05 0.1 0.3 0.5 0.7 0.9 0.95 0.975 0.99 0.995

Marginal Effects

Note. Figure F.21 is the analogue of Figure 10 on a country-by-country basis with the USD as the base
currency. Standard errors are computed via the block bootstrap and red error bars correspond to 68%
confidence intervals.
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Figure F.22: U.S. Interest Differentials, Liquidity Yields and Exchange Rates by Country Pt. 2

(a) NZD: Interest Differentials
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(b) NZD: Liquidity Yields
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(c) SEK: Interest Differentials
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(d) SEK: Liquidity Yields

-30

-20

-10

0

10

0.005 0.01 0.025 0.05 0.1 0.3 0.5 0.7 0.9 0.95 0.975 0.99 0.995

Marginal Effects

(e) NOK: Interest Differentials
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(f) NOK: Liquidity Yields
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(g) CAD: Interest Differentials
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(h) CAD: Liquidity Yields
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Note. Figure F.22 is the analogue of Figure 10 on a country-by-country basis with the USD as the base
currency. Standard errors are computed via the block bootstrap and red error bars correspond to 68%
confidence intervals.
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