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Abstract: A popular self-normalization (SN) approach in time series analysis uses the variance of

a partial sum as a self-normalizer. This is known to be sensitive to irregularities such as persistent

autocorrelation, heteroskedasticity, unit roots and outliers. We propose a novel SN approach based

on the adjusted-range of a partial sum, which is robust to these aforementioned irregularities.

We develop an adjusted-range based Kolmogorov-Smirnov type test for structural breaks for both

univariate and multivariate time series, and consider testing parameter constancy in a time series

regression setting. Our approach can rectify the well-known power decrease issue associated with

existing self-normalized KS tests without having to use backward and forward summations as in

Shao and Zhang (2010), and can alleviate the “better size but less power” phenomenon when the

existing SN approaches (Shao, 2010; Zhang et al., 2011; Wang and Shao, 2022) are used. Moreover,

our proposed tests can cater for more general alternatives. Monte Carlo simulations and empirical

studies demonstrate the merits of our approach.
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1 Introduction

We propose a new approach to conducting valid statistical inference in time series settings in the

presence of serial dependence and heteroskedasticity. The usual approach in the literature is based

on consistent estimation of the long-run variance (LRV). Substantial efforts have been devoted

to providing and improving estimators of the LRV that are valid under weak conditions on the

dependence structure. Perhaps one of the most well-known methods is the so-called heteroskedas-

ticity and autocorrelation consistent (HAC) LRV estimator, espoused by White (1980), Newey

and West (1987, 1994), Andrews (1991) and Andrews and Monahan (1992), among many others.

However, Andrews (1991) and Den Haan and Levin (1997), among others, find that the finite sam-

ple performance of these HAC LRV estimators is rather poor. Müller (2007) suggests that these

asymptotically consistent HAC LRV estimators, despite being theoretically appealing and empiri-

cally simple to apply, often lead to tests with poor sizes in finite samples when realistic amounts

of dependence are present.

An alternative approach is to use the so called fixed-b asymptotics approach, proposed by

Kiefer and Vogelsang (2005). The HAC LRV is often estimated using the nonparametric kernel

smoothing method, which involves the choice of a kernel function and a smoothing parameter called

bandwidth. Instead of assuming that the bandwidth parameter b tends to zero as the sample size

n approaches infinity, under the fixed-b asymptotics, b ∈ (0, 1] is set to be a fixed number, in

which case the HAC LRV estimator is asymptotically unbiased but inconsistent - it possesses a

limiting distribution rather than concentrating at its target.1 This approach, sometimes also called

self-normalization (SN), leads to a pivotal (but non-Gaussian) limiting distribution that can be

tabulated and used in inference. Kiefer and Vogelsang (2005) outline two advantages of the fixed-

b approach; specifically, it enables a more accurate first order approximation to the asymptotic

distribution and informative local power analysis for HAC robust tests. The fixed-b asymptotics

can enhance the size performance of various tests in finite samples (Kiefer et al., 2000; Kiefer and
1 In the fixed-b asymptotics, b is often chosen to be a fixed number in (0, 1]. In contrast, for standard asymptotics,
the bandwidth b vanishes to 0 as the sample size n increases, and for this reason, Kiefer and Vogelsang (2005) refer
to the standard asymptotics as small-b asymptotics.
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Vogelsang, 2002; 2005). However, there is a trade-off between size distortion and power loss; for a

larger b the size distortion rectifies itself but the power loss increases (Kiefer and Vogelsang, 2005;

Shao, 2015). Furthermore, the distribution of the fixed-b based HAC test statistics depends on

the nuisance parameter b; there is, however, no general guidance on choosing b, and it must be

prespecified in some ad hoc fashion. Moreover, Shao (2015) summarizes the Monte Carlo simulation

results from Kiefer and Vogelsang (2005), Shao (2010) and Shao and Zhang (2010) and finds that

when the time series is a unit-root or near unit-root process, the size of the fixed-b based HAC test

statistics deteriorates.

The contribution of our paper is threefold. First, we introduce a novel generally applicable

adjusted-range based SN method for time series analysis. For concreteness, we demonstrate its use

in testing for structural breaks in the mean of a class of approximately linear statistics and in the

correlation coefficients and matrices of a multivariate time series, as well as in testing the constancy

of parameters in a time series regression setting. Second, we develop adjusted-range based tests for

structural changes, which can cater for more general alternatives and hence are potentially powerful

against a wide range of alternatives, including smooth structural changes. For abrupt structural

changes, the number of break points does not need to be specified a priori in an ad hoc manner.

This contrasts with the G test proposed by Shao and Zhang (2010), which must be formulated

with a pre-specified number of change points. Third, we illustrate, through extensive simulation

studies, that the adjusted-range based SN can ameliorate the poor finite sample performance of

HAC based tests (Müller, 2007), and can help rectify the non-monotonic power issue, without

having to use forward and backward summations as employed by Shao and Zhang (2010), and

enable us to circumvent the specification of a contrast process as in Zhang and Lavitas (2018).

Moreover, we find, through simulation studies, that for statistical quantities that vary slowly over

time, such as the medians and correlation coefficients, instead of displaying the “better size but less

power” phenomenon, identified by Shao (2010) and Zhang et al. (2011), Shao and Zhang’s (2010) G

test suffers from an over-size problem. This is because the G test statistic relies on the SN approach

of Lobato (2001) and Shao (2010), and for statistical quantities (e.g., median, correlation) that do

not change much over time, and sometimes even almost remain constant as the estimation horizon

increases under the null hypothesis, the variance of the partial sum process can be quite small,

which would lead to over-rejection of the null hypothesis.
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Literature Review. The concept of SN originates from Student (1908), whose widely applied

and celebrated t statistic and distribution first utilized this idea. Despite the fact that the sample

variance based on a small number of observations is an inadequate estimator of a population

variance, it is stochastically proportional to the population variance and can be used as a normalizer

in order to construct a test statistic. The concept of SN has become an important principle in

conducting statistical inference (Shao, 2015).

The existing self-normalized approach to inference for time series is first introduced in Shao

(2010) as a generalization of an idea devised and developed by Kiefer et al. (2000) and Lobato

(2001). Since its introduction by Lobato (2001) and Shao (2010), SN has been deployed in various

aspects of statistical inference, such as confidence interval construction (Shao, 2010), testing for

autocorrelation (Lobato, 2001; Shao, 2010; Boubacar-Maïnassara and Saussereau, 2018), testing

for structural breaks (Shao and Zhang, 2010; Zhang et al., 2011; Zhang and Lavitas, 2018), and

has been applied to various types of data, such as functional time series (Zhang et al., 2011; Dette

et al., 2020), spatial data (Zhang et al., 2014), censored dependent data (Huang et al., 2015) and

alternating regime index datasets (Kim and Shin, 2020). SN has also been applied across many

academic fields of study, including: economics (Lobato, 2001; Shao, 2010), finance (Choi and Shin,

2021, 2020), ecology (Zhang et al., 2014), climate studies (Dette et al., 2020) and epidemiology

(Jiang et al., 2023).

The SN approach proposed by Lobato (2001) and Shao (2010) is based on the variance of the

partial sum of a time series process, which is sensitive to irregularities such as persistent autocor-

relation, heteroskedasticity, near-unit roots and outliers. To alleviate the adverse effects of these

irregularities, in this paper we propose the use of the adjusted range of a partial sum instead of

the sample variance. Similar to the work of Lobato (2001) and Shao (2010), the sample range

of a partial sum is asymptotically proportional to the square root of the LRV up to a stochas-

tic factor, and since its distribution is nuisance parameter free, it can be used as an alternative

self-normalizer. As is well-known, the range has some appealing robustness properties, such as the

ability to deal with persistent autocorrelation and to accommodate irregularities such as outliers,

high levels of skewness/kurtosis and unit-root behavior in volatilities. For example, Mandelbrot

and Wallis (1969) show by Monte Carlo simulation studies that a range statistic can effectively de-

tect long-range dependence in highly non-Gaussian time series with large skewness and/or kurtosis.
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Mandelbrot (1972, 1975) shows the appealing almost-sure convergence property of the range statis-

tic for stochastic processes with infinite variances, a distinct advantage over the methods based on

autocorrelations and variance ratios which may not be well-defined for infinite variance processes.

Moreover, the range as a statistical quantity has also been widely applied in financial volatility

estimation (Parkinson, 1980; Alizadeh et al., 2002; Chou et al., 2010).

A cornerstone of time series analysis is the structural stability of the data or model under

consideration and failure to incorporate structural breaks will inevitably lead to unreliable inferences

and forecasts. The importance of testing for structural breaks is also reflected in the vast related

literature in various contexts; see (e.g.) Hansen (2001) and Aue and Horváth (2013) for literature

reviews on testing for structural breaks. Depending on the quantities of interest, structural break

tests can be conducted for the mean, variance or covariance structure and for general model stability;

see (e.g.) Stock and Watson (1996), Bai (1997), Altissimo and Corradi (2003) and Harchaoui and

Lévy-Leduc (2010) for references on testing for structural breaks in the mean. Substantial efforts

have been devoted to testing breaks in time series regression models. Noticeably, the constancy of

parameter tests are shown to be equivalent to tests of the mean of certain residuals, such as the

estimated one-step ahead prediction errors. In particular, since Brown et al. (1975) introduce the

cumulative sum (CUSUM) test based on recursive residuals, a large number of tests for parameter

constancy based on CUSUM processes have been developed. For instance, Krämer et al. (1988)

consider the CUSUM test for structural breaks when lagged dependent variables are incorporated

in the linear regression model, and show that the CUSUM tests retain their asymptotic significance

levels in dynamic regression models. Ploberger and Krämer (1992) consider the use of a CUSUM

test when testing for parameter constancy in a linear regression model. See Andrews (1993), Bai

and Perron (1998) and Qu and Perron (2007) for more studies on testing for breaks in time series

regression models.

Testing for a structural break in variance is particularly important in economics and finance,

where the stability or otherwise of volatility is a crucial issue; see, for instance, Inclan and Tiao

(1994), Chen and Gupta (1997) and Smith (2008). There are also efforts that combine tests for

structural breaks in mean and variance, such as Wang and Zivot (2000), Pitarakis (2004) and Jin et

al. (2018). Aue et al. (2009) test for structural breaks in the covariance structure. Moreover, given

that many multivariate volatility models impose restrictions on the correlation structure to deal
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with the “curse of dimensionality”, such as the constant correlation model (Bollerslev, 1990), the

diagonal model (Bollerslev et al., 1988), the dynamic conditional correlation model (Engle, 2002),

and the orthogonal or principal component generalized autoregressive conditional heteroskedasticity

(GARCH) model (Alexander, 1998), testing for the constancy of correlation coefficients/matrices

is also an important aspect in the literature; see (e.g.) Wied et al. (2012), Wied (2017), Choi and

Shin (2021) and Choi and Shin (2020).

The remainder of this paper is organized as follows. Section 2 considers testing for changes in

the mean of a time series and introduces a novel adjusted-range based SN in both the univariate

and multivariate cases. Section 3 generalizes Section 2 and covers testing for changes in a class

of approximately linear statistics, which includes the marginal mean, the marginal variance, the

autocorrelation function, quantiles and the spectrum as special cases. Section 4 proposes adjusted-

range based Kolmogorov-Smirnov-type tests for constancy of parameters. Sections 5 and 6 cover

the simulation studies and empirical applications, respectively. Finally, Section 7 concludes.

2 Testing structural breaks in mean

2.1 The univariate case

Considering a univariate time series {Xt}, we wish to test the null hypothesis

H(1)
0 : E (X1) = · · · = E (Xn) = µ, (1)

versus the alternative hypothesis

H(1)
1 : H(1)

0 is false. (2)

Define the CUSUM process as

Tn (k) = n−1/2
k∑

t=1

(
Xt −Xn

)
, k = ⌊sn⌋ , s ∈ [0, 1] ,

where Xn = n−1
∑n

t=1Xt and ⌊x⌋ = max {z ≤ x : z ∈ Z} . Under appropriate moment and weak

dependence conditions (e.g., Assumption 2.1 in Phillips (1987)), Tn (k) ⇒ σB (s), where B (s) is

the one-dimensional Brownian motion (Wiener process), σ2 = limn→∞ nvar
(
Xn

)
=
∑

j∈Z γ (j) is
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the LRV, γ (j) = cov(X0, Xj), and “⇒” denotes weak convergence. Let B (s) = B (s) − sB (1) be

a Brownian Bridge. Under the null hypothesis H(1)
0 , we have Tn (k) = Tn (⌊sn⌋) ⇒ σB (s). The

CUSUM statistic, also known as the KS statistic, is defined as

KS = sup
s∈[0,1]

|Tn (⌊sn⌋) /σ|
d→ sup

s∈[0,1]
|B (s)| ,

where “ d→” denotes convergence in distribution. In practice, a consistent estimator for σ is needed,

for example the HAC LRV estimator σ̂2n =
∑n−1

k=−n+1 γ̂ (k)K (k/b), where K (·) and b denote a

kernel function and a bandwidth that depends on the sample size n, respectively. We use KS0 to

denote the HAC standardized KS test statistic. It is known that HAC robust tests tend to have

poor sizes in small and finite samples with a moderate degree of autocorrelation (Müller, 2007).

Let Xt = t−1
∑t

i=1Xi. The self-normalizer of Shao (2010) then takes the form

V 2
n = n−2

n∑
t=1

t2
(
Xt −Xn

)2
.

Shao and Zhang (2010) point out that a naive application of the SN idea of Shao (2010) fails. A

well-known undesirable feature of the self-normalized KS test statistic

KSV = max
1≤k≤n

∣∣V −1
n Tn (k)

∣∣
is that it has decreasing power, as the level shift increases; see Figure 1 in Shao and Zhang (2010).

Shao and Zhang (2010) attribute this result to the increase in Vn with respect to the break size, and

address such issues by introducing a so-called G test statistic, whose self-normalizer accommodates

both the forward partial sum before the break point k∗, and the backward partial sum after k∗,

and so is invariant with respect to the structural shift ∆n := E (Xk∗+1) − E (Xk∗). As a result,

Shao and Zhang’s (2010) G test can detect the change by formulating two piecewise stationary

partitions. However, the G test, in its simplest form, can cater for one change-point alternative
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only.2

Here, we propose an alternative approach to improve the performance of KSV by using a new

type of SN, which is based on the adjusted-range of the partial sum,

Rn = max
1≤k≤n

Tn (k)− min
1≤k≤n

Tn (k) . (3)

To derive the asymptotic distribution of Rn, we first assume that Xt = µ + εt, where µ is a

fixed, yet unknown finite parameter, and εt is a zero-mean time series process. Following Phillips

(1987), we impose the following regularity conditions.

Assumption 1. (i) E (εt) = 0 for all t; (ii) suptE
(
|εt|2β

)
< ∞ for some β > 2; (iii) 0 < σ2 =

limn→∞E
[
n−1 (

∑n
t=1 εt)

2
]
<∞; (iv) {εt} is an α-mixing process with mixing coefficients αk that

satisfy
∑∞

k=1 α
1−2/β
k <∞.

Assumption 1 provides regularity conditions on moments and serial dependence of (εt); see

Phillips (1987) for discussions on the rationale behind these assumptions.

Under Assumption 1, we have

Rn
d→ σ

(
sup

s∈[0,1]
B (s)− inf

s∈[0,1]
B (s)

)
.

Therefore, under the null hypothesis H(1)
0 ,

KSR = max
1≤k≤n

∣∣R−1
n Tn (k)

∣∣ d→ U, (4)

where the positive scalar random variable U is defined as

U =
sups∈[0,1] |B (s)|

sups∈[0,1] B (s)− infs∈[0,1] B (s)
. (5)

2 Shao and Zhang (2010) suggest that the number of change points can be estimated through treating change point
estimation and testing as model selection or adopting a sequential testing procedure; Zhang and Lavitas (2018) propose
to circumvent the estimation for the number of break points and the application of a sequential testing procedure
through the construction of the contrast processes and formulate a so-called T test statistic, which detects change
points by recursive scanning. However, both the forward and backward summations in Shao and Zhang (2010) and
the construction of contrast processes in Zhang and Lavitas (2018) are computationally expensive. Despite covering
the multivariate cases in their theoretical exposition, the simulation studies of Shao and Zhang (2010) and Zhang and
Lavitas (2018) are restricted to univariate cases only. Zhang and Lavitas (2018) even introduce a grid approximation
scheme to alleviate the computational burden in the univariate case.
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The asymptotic distributions of KSV and KSR can be obtained through simulations. The

simulated critical values for KS, KSR and KSV are summarized in Table 1.

Table 1: Simulated critical values for KS type test statistics.

Level 10.0% 5.0% 2.5% 1.0% 0.5% 0.1%
KS 1.2220 1.3640 1.4762 1.6175 1.7119 1.9111
KSV 2.8857 3.0585 3.2029 3.3896 3.4765 3.6735
KSR 0.8684 0.9117 0.9391 0.9634 0.9732 0.9869

Note: The number of Monte Carlo simulations is 10, 000 and the Brownian motion is approximated
by the normalized sum of 200, 000 i.i.d. N(0, 1) realizations.

The KSR test statistic is valid under a broad range of alternatives, including multiple breaks,

smooth changes, or a mixture of them. However, to discuss its consistency, we focus on the one

break point alternative (6), which is the main alternative hypothesis considered by Shao and Zhang

(2010):

H(1)∗
1 : E (X1) = · · · = E (Xk∗) ̸= E (Xk∗+1) = · · · = E (Xn) , (6)

where k∗ = ⌊s0n⌋ is the actual break location and s0 ∈ (0, 1). Define δ := E (Xk∗+1)− E (Xk∗) as

the level of structural shift, and denote cα as the critical value of KSR at significance level α%.

Theorem 1. Suppose that Assumption 1 holds. Then,

(i) if δ ̸= 0 is fixed, then Pr
(
KSR > cα

)
= 1 as n→ ∞;

(ii) if δ = n−1/2η ̸= 0, then limn→∞ Pr
(
KSR > cα

)
> 0, and lim|η|→∞ limn→∞ Pr

(
KSR > cα

)
=

1.

Theorem 1 shows that the proposed test KSR has nontrivial power against the class of one

change-point alternatives that approach zero at the parametric root-n rate. The proof for Theorem

1 is summarized in Appendix A.1. From the proof of Theorem 1, we can see that any structural

break(s) that renders either Tn (k
∗) = ∞ provided that min1≤k≤nTn (k) /Tn (k

∗) = op (1), or

Tn (k
∗) = −∞ provided that max1≤k≤nTn (k) /Tn (k

∗) = op (1), when n → ∞, should suffice for

the consistency ofKSR. This rules out some oscillating breaks that push bothmax1≤k≤n |Tn (k)| and

min1≤k≤nTn (k) to ±∞ as n→ ∞. See the supplementary material for more detailed discussions.
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2.2 The multivariate case

The generalization of the KSR test statistic to the multivariate case is not straightforward, be-

cause the adjusted-range (3) is always non-negative, while the off-diagonal components for a valid

covariance estimator can be negative, albeit the whole matrix being at least positive semi-definite

(PSD). In this section, we focus on testing structural breaks in the mean of a multivariate se-

ries.3 Let Xt = (X1,t, . . . , Xm,t) ∈ Rm for t = 1, . . . , n, where m ≥ 2 is a fixed finite inte-

ger. We assume that under the null hypothesis Xt is weakly stationary with E(Xt) = µ and

E ((Xt − µ) (Xt − µ)⊺) = ΣX .

2.2.1 Triangular structure

We first suppose that there is a unit lower triangular matrix L (with 1’s along the principal diagonal)

such that the process vt = LXt has components that are pairwise uncorrelated at all leads and

lags. Specifically, we suppose that cov(vit, vjs) = 0 for all i ̸= j and all t, s = 1, 2, . . . , whereas

cov(vit, vi,t+k) = γi(k) may not be zero for all k, although each such autocovariance satisfies a

summability condition. Let ΣX = CDC⊺ be the LDL representation of the covariance matrix

of Xt, where D is a diagonal matrix and C is the unique unit lower triangular matrix . Similar

to independent component analysis (ICA), we refer to C as the “mixing matrix” and C−1 as

the “demixing matrix” (Gourieroux et al., 2017). Under our assumed structure, L = C−1 and

the autocovariance function of the time series Xt satisfies ΓX(k) = E [(Xt − µ) (Xt+k − µ)⊺] =

CD(k)C⊺ for k = 0,±1,±2, where D(k) = diag{γ1(k), . . . , γm(k)}. The m2 functions in ΓX(k) are

driven by m freely chosen functions γ1(k), . . . , γm(k) and the m(m − 1)/2 free parameters in C.

This is a reasonable assumption in the case where the level of serial dependence is small or have a

simple structure, and is one of the main structures exploited in the structural vector autoregression

(SVAR) literature. In practice, we form the LDL decomposition on the sample covariance matrix

of Xt, denoted as Σ̂X , such that Σ̂X = ĈD̂Ĉ⊺, where Ĉ is a unique lower triangular matrix with

1’s along the principal diagonal and D̂ is a unique diagonal matrix with positive entries along

the principal diagonal. The original series Xt is then mapped into ût = (û1,t, . . . , ûm,t)
⊺ , using

the linear transformation ût = Ĉ−1Xt. Since the series ut = C−1Xt has a negligible level of cross
3 Shao and Zhang (2010) also consider testing the structural breaks for the multivariate case, under a general
framework of so-called approximately linear statistics, which include the mean as a special case. We discuss testing
structural breaks for approximately linear statistics in Section 3.
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correlation, the same should approximately be true of ût - the estimation errors for Ĉ have negligible

effect, because C can be consistently estimated.4 We assume that all {ul,t}, for l = 1, . . . ,m,

satisfy Assumption 1. This is a kind of partial prewhitening transformation because its goal is

to eliminate cross dependence but not own serial dependence. For Xt that suffers from persistent

autocorrelation, we recommend applying the Vector Autoregression (VAR) and conducting an LDL

decomposition on the sample variance of the estimated errors of the VAR model; see Section 2.2.2

for more discussion, which allows for a richer dynamic structure.

The construction of the adjusted range-based extended KS (EKS) test statistic takes the fol-

lowing steps. First, generate a new multivariate CUSUM process,

T∗
n (k) = n−1/2

k∑
t=1

(ût − un) ⇒ ∆uB (s) , (7)

where un = (u1,n, . . . , um,n) = n−1
∑n

t=1 ût
p→ 0, and ∆u is a matrix constant, such that the LRV

of ût obeys Σu = ∆u∆
⊺
u. Note that (7) holds under Assumption 1.

Second, denote the l-th component of T∗
n (k) as T

(l)∗
n (k) = n−1/2

∑k
t=1 (ûl,t − ul,n) , for l =

1, . . . ,m. Generate the m× 1 vector

R̃n =


max1≤k≤n

(
T
(1)∗
n (k)

)
−min1≤k≤n

(
T
(1)∗
n (k)

)
...

max1≤k≤n

(
T
(m)∗
n (k)

)
−min1≤k≤n

(
T
(m)∗
n (k)

)
 . (8)

The adjusted-range based covariance estimator for ût is, therefore, diag
{
R̃2

n

}
, which is a matrix

with diagonal elements equal to R̃2
n(l), for l = 1, . . . ,m. The adjusted-range based covariance

estimator for {Xt} is Ĉ⊺
diag

{
R̃2

n

}
Ĉ.

Third, the EKS test statistic is defined as

EKSR(m) = max
1≤k≤n−1

T∗
n (k)

⊺ [
diag

{
R̃2

n

}]−1
T∗
n (k) (9)

= max
1≤k≤n−1

Tn (k)
⊺ {
Ĉ

⊺
diag

{
R̃2

n

}
Ĉ
}−1

Tn (k) ,

4 This follows from the fact the sample covariance is a consistent estimator for the population covariance, and the
LDL decomposition is unique for any given sample covariance.
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where m ≥ 2. Further, define the non-negative scalar random variable

Wm = sup
s∈[0,1]

Bm (s)
⊺
[
diag

{
sup

s∈[0,1]
Bm (s)− inf

s∈[0,1]
Bm (s)

}]−2

Bm (s)

 , (10)

where Bm (s) is the m-dimensional Brownian bridge. If all {ûl,t}, for l = 1, . . . ,m, satisfy Assump-

tion 1, we have

EKSR(m)
d→Wm as n→ ∞. (11)

This three-step procedure effectively resolves the problem of extending the univariate adjusted-

range based self-normalized KS test to the multivariate case. The proof for (11) is omitted, as it is

a direct result of the invariance principle and the continuous mapping theorem (CMT).

The simulated asymptotic critical values for the EKSR(m) test statistics are tabulated in Table

2.

Table 2: Simulated critical values for EKSR(m) for m = 2, 3, . . . , 10.

m\Level 10.0% 5.0% 2.5% 1.0% 0.5% 0.1%
m = 2 1.0339 1.1425 1.2518 1.3706 1.4530 1.5732
m = 3 1.2954 1.4216 1.5281 1.6720 1.7793 1.9893
m = 4 1.5456 1.6818 1.8003 1.9645 2.0482 2.2967
m = 5 1.7692 1.9149 2.0505 2.1939 2.3109 2.7045
m = 6 1.9829 2.1544 2.2870 2.4742 2.5882 2.9517
m = 7 2.1970 2.3614 2.5163 2.6841 2.8356 3.1257
m = 8 2.3971 2.5733 2.7497 2.9263 3.0924 3.3959
m = 9 2.6046 2.7860 2.9433 3.1438 3.2838 3.6567
m = 10 2.8039 2.9928 3.1787 3.3765 3.5211 3.7879

Note: The number of Monte Carlo replications is 10, 000 and the Brownian motion is approximated
using 5, 000 i.i.d. N(0, 1) realizations.

To prove the consistency of the EKSR(m) test, we again focus on the one change-point alter-

native (6). Define ∆n := E (Xk∗+1)−E (Xk∗) as the level of structural shift, and denote Cα as the

critical value of EKSR(m) at significance level α%.

Theorem 2. Suppose that (7) holds. Then under the alternative hypothesis,

(i) if s0 ∈ (0, 1) and ∆n ̸= 0 is fixed, then Pr
(
EKSR(m) > Cα

)
= 1 as n→ ∞;

(ii) if ∆n = n−1/2η ̸= 0, η =
(
η(1), . . . , η(m)

)⊺ ̸= 0, then limn→∞ Pr
(
EKSR(m) > Cα

)
> 0 and
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lim||η||→∞ limn→∞ Pr
(
EKSR(m) > Cα

)
= 1.

2.2.2 Residual triangular structure

If the Xt suffer from a high level of heteroskedasticity and/or autocorrelation, we could apply the

VAR approach and assume a triangular structure for the error process. The VAR(p) model is

Xt = Ψ1Xt−1 + . . .+ΨpXt−p + et,

where p can be selected using model selection criteria, such as the AIC (Akaike Information Crite-

rion). We conduct the LDL decomposition on the sample variance for the error êt in the VAR model,

denoted by Σ̂e. Intuitively, this procedure is similar to the VAR prewhitening approach of Andrews

and Monahan (1992), where the LRV of Xt, denoted by ΣX , is estimated by first estimating the

LRV of êt using the HAC approach, and then using the estimated parameters Ψ̂i, i = 1, . . . , p,

to conduct the reverse transformation, such that Σ̂X =
(
Im −

∑p
i=1 Ψ̂i

)−1
Σ̂e

(
Im −

∑p
i=1 Ψ̂i

)−1
,

where Im denotes an m×m identity matrix.

Similarly, we first obtain ût through the LDL decomposition on the sample variance of the VAR

errors Σ̂e = ÂeD̂eÂ
⊺
e . Then, following (7) and (8), the adjusted-range based covariance estimator

for êt is Âediag
{
R̃2

n

}
Â⊺

e , and that for Xt is

Σ̃X =

(
Im −

P∑
i=1

Ψ̂i

)−1

Âediag
{
R̃2

n

}
Â⊺

e

(
Im −

P∑
i=1

Ψ̂i

)−1

.

Thus, the adjusted-range based EKS test statistic becomes

EKSR(m) = max
1≤k≤n−1

Tn (k)
⊺
Σ̃−1
X Tn (k) ,

which converges in distribution toWm defined in (10). This is equivalent to setting ût = Âe

(
Im −

∑p
i=1 Ψ̂i

)−1
Xt;

or equivalently Ĉ =
(
Im −

∑p
i=1 Ψ̂i

)
Â−1

e . The validity of this VAR approach relies on consistent

estimation for Ψ̂i for i = 1, . . . , p; see Hamilton (1994 pp. 298-299) for the asymptotic properties

of the maximum likelihood (ML) estimator of a VAR model.

For other statistical quantities, we recommend using the LDL decomposition on the sample
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variance of Xt. For instance, for testing constancy of correlation coefficients/matrices, the VAR

approach would remove the correlation among X1,t, . . . , Xm,t, which might render the EKS test

statistic evaluated on û1,t, . . . , ûm,t unable to detect any structural breaks in the correlations among

Xt in finite samples. See the supplementary materials for tests for constancy of correlation coeffi-

cients/matrices.

A similar rationale applies to the ICA. We can apply the fast ICA algorithm developed by

Hyvarinen (1999) and ICA via distance covariance by Matteson and Tsay (2017) to the sample

variances of both Xt and êt, respectively. However, we find that they lead to lower powers; in

the extreme case, when testing constancy of correlation coefficients/matrices, both the sizes and

powers are even diminished in finite samples.5 For many statistical quantities other than the

mean, all we need is a linear/affine transformation that can capture and summarize (off-diagonal)

correlatedness into the diagonal components. In contrast, ICA algorithms that deliver independent

(û1, t, . . . , ûm,t)
⊺ reduce the powers of the EKS test statistics.

In situations involving high-dimensional series, one may utilize techniques such as the singular

value decomposition (SVD) prewhitening of the ICA, or the Karhunen-Loève expansion followed

by a truncation to reduce the number of parameters to be estimated. However, these approaches

are beyond the scope of this paper and will be pursued in subsequent research.

3 Testing for structural breaks in approximately linear statistics

In this section, we adopt the framework of Shao and Zhang (2010) and consider a general quantity

of interest, known as approximately linear statistics (Kunsch, 1989).6

Let Yt = (Xt, . . . , Xt+m−1)
⊺, t = 1, . . . , n, and denote Fm

t as the distribution of Yt. Define

θt = T (Fm
t ) ∈ Rq, t = 1, . . . , n, (12)

as the quantity of interest, where T is a functional that takes values in Rq. Examples of θ include,

but are not limited to, the marginal mean of Xt, the marginal variance of Xt, the autocovariance
5 The simulation studies are available from the authors upon request. 6 We also consider testing structural breaks
in correlation coefficients and matrices, reflecting their importance in volatility modeling. Since correlations are not
approximately linear statistics, adjusted-range based self-normalized tests for correlations are introduced in a slightly
different asymptotic setting; see the supplementary material for detailed theoretical exposition.
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function of Xt and the quantiles of the distribution of F1 (Shao and Zhang, 2010).

Here, we are interested in testing the null hypothesis

H(2)
0 : θ1 = · · · = θn,

versus the alternative hypothesis

H(2)
1 : H(2)

0 is false.

We replace the partial sum process, in the case of mean, by a sequence of recursive estimators

of the quantity of interest, which are functionals of the distribution function Fm
t . Because Fm

t is

unknown, these recursive estimators are obtained using the empirical distribution function. Let

ρ1,k be the empirical distribution based on {Yt}kt=1, namely

ρ1,k = k−1
k∑

t=1

δYt , (13)

for 1 ≤ k ≤ n, where δY is the probability measure which puts mass 1 at point Y ; see Definition 1

in Hampel et al. (1986, p.84).

The approximately linear statistic θ̂1,k satisfies the following expansion (Shao and Zhang, 2010),

θ̂1,k = T (ρ1,k) = T (Fm) + k−1
k∑

t=1

IF (Yt;F
m) +R1,k, (14)

for 1 ≤ k ≤ n, where IF (Yt;F
m) is the influence function of T at Fm, such that

IF (Y ;Fm) = lim
ϵ↓0

T [(1− ϵ)Fm + ϵδY ]−T (Fm)

ϵ
,

and R1,k is the remainder term of the expansion.

We define a process based on θ̂1,k, i.e.,

Tn (k) = kn−1/2
(
θ̂1,k − θ̂1,n

)
, (15)

where θ̂1,k is estimated using the subsample {Yj}kj=1.

Following Shao and Zhang (2010), let D [0, 1] be the space of functions on [0, 1], which are càdlàg
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functions endowed with the Skorokhold topology (Billingsley, 1968); furthermore, we denote “⇒”

as weak convergence in D [0, 1], hereafter. We impose the following condition.

Assumption 2. E {IF (Yt;F
m)} = 0 and n−1/2

∑⌊sn⌋
t=1 IF (Yt;F

m) ⇒ ∆Bq (s), where ∆ is a q × q

lower triangular matrix with nonnegative diagonal entries and Bq (·) is a q-dimensional vector

of independent Brownian motions. The long-run variance covariance matrix Σ(Fm) = ∆∆⊺ =∑∞
k=−∞ cov {IF (Y0;F

m) , IF (Yk;F
m)} is positive definite.

Assumption 2 is referred to as Assumption 1 in Shao (2010), or Assumption 3.1 in Shao and

Zhang (2010). Shao (2010) notes that it is not primitive, and cite Assumption 2.1 in Phillips (1987)

as a primitive condition, which is identical to Assumption 1 imposed earlier.

To ensure that the remainder term for the expansion in (14) vanishes to zero asymptotically,

we impose the following condition.

Assumption 3. sup1≤k≤n |kR1,k| = op
(
n1/2

)
.

Assumption 3 is similar to Assumption 3.2 in Shao and Zhang (2010). The only difference is

that since we do not need the backward and forward summations as in the G test of Shao and Zhang

(2010), there is no need to assume that sup1≤k≤n |kRn−k+1,n| = op
(
n1/2

)
. Under the expansion

in (14), if Assumptions 2 and 3 are satisfied, we have
√
n
(
θ̂1,n − θ

)
d→ N (0,Σ(Fm)) as n → ∞,

where θ = E
(
θ̂1,n

)
.

The subtleness for applying the EKS test to the present context is the existence of cross depen-

dence in θ̂1,k, which follows from the cross dependence in Yt.7 Following a procedure similar to that

in Section 2.2, we work with ût = Ĉ−1Yt, where Ĉ is obtained through an LDL decomposition on

the sample variance of Yt, such that Σ̂Y = ĈD̂Ĉ⊺. Because ut is a linear/affine transformation of Yt,

from the multivariate change of variables theorem, the Jacobian of such an inverse transformation

is det(Ĉ), which, together with the approximately linear form of the quantity of interest as in (14),

implies that detecting structural changes in the same approximately linear statistics of ût, denoted

as θ∗, would be identical to testing structural changes in θ.8
7 As it can be seen from Section 2.2, our transformation methods are “partial prewhitening” in the sense that we
only remove cross dependence, but not own temporal dependence of a time series. However, for series that suffer
from a high level of heteroskedasticity and/or autocorrelation, and when we are testing for structural breaks in the
mean, we need to resort to VAR prewhitening.

8 If we have explicit information or would like to impose the condition that different components of θ are uncor-
related, as in the case when θ comprises the mean and variance of normally distributed random variables, then C
should be an identity matrix.
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The adjusted-range based EKS test statistic is obtained as follows. First, construct a multi-

variate CUSUM process

T∗
n (k) = kn−1/2

(
θ̂∗1,k − θ̂∗1,n

)
. (16)

Second, put T∗
n (k) = (T

(1)∗
n (k) , . . . ,T

(q)∗
n (k))

⊺ . Third, generate a q × 1 vector

Rn =


max1≤k≤n

(
T
(1)∗
n (k)

)
−min1≤k≤n

(
T
(1)∗
n (k)

)
...

max1≤k≤n

(
T
(q)∗
n (k)

)
−min1≤k≤n

(
T
(q)∗
n (k)

)
 . (17)

The adjusted-range based covariance estimator for θ∗ is diag
{
R2

n

}
. The EKS test statistic is

EKSR(q) = max
1≤k≤n−1

T∗
n (k)

⊺ [
diag

{
R2

n

}]−1
T∗
n (k) . (18)

Theorem 3. Suppose Assumptions 2 and 3 hold. Then under the null hypothesis H(2)
0 , as n→ ∞,

EKSR(q) d→Wq, (19)

where Wq is defined in (10).

The proof for Theorem 3 is relegated to Appendix A.2. Table 2 provides the simulated critical

values.

4 Testing parameter constancy

We now demonstrate that the adjusted range-based KS/EKS statistics can be used to test for

parameter constancy. The notations and assumptions largely follow those of Chan et al. (2021),

who use the SN approach of Shao (2010) and Lobato (2001) for sequential change point monitoring.

See Chan et al. (2021) for a list of references adopting similar asymptotic settings.

Suppose that {Xt}nt=1 is a stationary ergodic time series sample, with the joint density fθ,

where θ ∈ Rd lies in a compact space Θ, where d ≥ 1 is a positive integer. {fθ : θ ∈ Θ} can be

regarded as a class of parametric models indexed by parameter θ. The parameter of interest θ
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satisfies E [L (Xt, θ)] = 0. As a result, θ can be consistently estimated by solving the system of

equations
∑n

t=1 L
(
Xt, θ̂

)
= 0. This framework includes classical estimators such as ML estimators,

M-estimators, least-squares estimators, and generalized method of moments estimators (Chan et

al., 2021). We are interested in testing the null hypothesis

Hp
0 : θ = θ0,

against the alternative hypothesis

Hp
1 : H

p
0 is false.

Let L′ (Xt, θ) be the gradient matrix of L (Xt, θ) with respect to the parameter θ. Denote ∥c∥ as

the supremum norm of a vector c. Define the matrix norm of a matrix A as ∥A∥ = supx:∥x∥=1 ∥Ax∥.

We impose the following regularity conditions as in Chan et al. (2021).

Assumption 4. The true parameter value θ0 is in the interior region of Θ, where Θ is a compact

set of Rd.

Assumption 5. The time series process {Xt} is stationary and ergodic.

Assumption 6. E [supθ∈Θ ∥L (Xt, θ)∥] < ∞ and θ0 is the unique zero solution of E [L (Xt, θ)].

That is, for any given constant ϵ > 0, there exists a constant κ > 0, such that E [L (Xt, θ)] > κ for

all θ, with ∥θ − θ0∥ > ϵ.

Assumption 7. E
[
supθ∈Θ ∥L (Xt, θ0)∥2+δ

]
< ∞, for some δ > 0, and {Xt} is a strong mixing

sequence with mixing coefficients αk satisfying
∑∞

k=1 α
δ/(2+δ)
k <∞.

Assumption 8. L (Xt, θ) is continuously differentiable with respect to θ in a neighborhood Vθ0of

θ0. In addition, E [L′ (Xt, θ0)] is positive definite, and E
(
supθ∈Vθ0

∥L′ (Xt, θ)∥
)
<∞.

We refer to
{
L
(
Xt, θ̂

)}
as “generalized residuals”. Under Assumptions 4-8, testing for pa-

rameter constancy is equivalent to testing structural breaks in
{
L
(
Xt, θ̂

)}
, which implies that

structural break tests in mean, such as the G test proposed by Shao and Zhang (2010) and the KS

type tests, are all asymptotically valid tests for parameter constancy under this framework. Here,

we focus on developing the adjusted-range based KS and EKS tests.
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First, we show the consistency of the parameter estimator θ̂ and the invariance principle of the

partial sum process S
(
k, θ̂
)
= n−1/2

∑k
t=1 L

(
Xt, θ̂

)
, for k = 1, . . . , n, as stated in Lemma 1 below.

Lemma 1. (i) Under Assumptions 4-8, θ̂ = θ0 +Op

(
n−1/2

)
.

(ii) Under Assumptions 5 and 7, S
(
k, θ̂
)
= n−1/2

∑⌊sn⌋
t=1 L

(
Xt, θ̂

)
⇒ ∆MBd (s), where ∆M∆⊺

M =∑∞
k=−∞E [L (X1, θ0)L (Xk+1, θ0)

⊺].

Lemma 1 is similar to Lemma 1 of Chan et al. (2021), thus we refer its proof to those of

Theorem 3 of Kirch and Kamgaing (2012) and Theorem 3.2.1 of Lin and Lu (1996) as cited in

Chan et al. (2021).

With Lemma 1, we then apply the functional central limit theorem (FCLT) and obtain

RM = max
1≤k≤n

S
(
k, θ̂
)
− min

1≤k≤n
S
(
k, θ̂
)

d→ ∆M

[
sup

s∈[0,1]
Bd (s)− inf

s∈[0,1]
Bd (s)

]
.

The adjusted-range based tests for constancy of parameter follow from CMT. When the parameter

dimension d = 1, the adjusted-range based test statistic for constancy of parameters boils down to

MR = max
1≤k≤n

∣∣∣(RM
)−1

S
(
k, θ̂
)∣∣∣ . (20)

When d ≥ 2, the construction of the test statistic depends on whether the “generalized residuals” are

correlated or not, which in turn depends on the estimation method. Let L∗
(
Xt, θ̂

)
= Ĉ−1L

(
Xt, θ̂

)
,

where Ĉ is an identity matrix when
{
L
(
Xt, θ̂

)}n

t=1
exhibits no cross dependence, e.g. when θ̂ is ob-

tained through estimating a correctly specified model by the ordinary least squares (OLS) method,{
L
(
Xt, θ̂

)}n

t=1
is the time series of residuals, which are uncorrelated. In general,

{
L∗
(
Xt, θ̂

)}n

t=1

can be correlated; for example, when we use the ML estimation,
{
L
(
Xt, θ̂

)}n

t=1
correspond to

the scores. It is well known that under a correctly specified parametric model, the variance co-

variance matrix of the scores is equal to the negative expected value of the Hessian matrix of the

log-likelihood, according to the Fisher information equality.9 In that case, following Section 2.2,

Ĉ is obtained through the LDL decomposition on the sample variance of
{
L
(
Xt, θ̂

)}n

t=1
, which

converges in probability to the Fisher information matrix.
9 Noticeably, Chan et al. (2021) consider the scores when sequentially monitoring the changes in parameter in
stochastic volatility (SV) models; Pape et al. (2021) detect structural shifts in the dynamic conditional correlation
(DCC) model of Engle (2002) by testing breaks in the score of the quasi-likelihood.
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When d ≥ 2, define S∗
(
k, θ̂
)
=
(
S(1)∗

(
k, θ̂
)
, . . . , S(d)∗

(
k, θ̂
))⊺

= n−1/2
∑k

t=1 Ĉ
−1L

(
Xt, θ̂

)
,

and then we generate a d× 1 adjusted-range based self-normalizer

R̃M
n =


max1≤k≤n

(
S(1)∗

(
k, θ̂
))

−min1≤k≤n

(
S(1)∗

(
k, θ̂
))

...

max1≤k≤n

(
S(d)∗

(
k, θ̂
))

−min1≤k≤n

(
S(d)∗

(
k, θ̂
))

 .

Then, the adjusted-range based test statistic for parameter constancy is

MR = max
1≤k≤n−1

S∗
(
k, θ̂
)⊺ [

diag
{
R̃M

n

}]−2
S∗
(
k, θ̂
)
.

The asymptotic properties of the adjusted-range based test statistics for constancy of parameter

are summarized in the following theorem.

Theorem 4. Suppose Assumptions 4-8 hold. Then under the null hypothesis Hp
0, as n→ ∞,

MR d→ U for d = 1, and MR d→Wd, for d ≥ 2,

where U is defined in (5), and Wd is defined in (10).

The proof for Theorem 4 is omitted for brevity as it follows from CMT. The consistency of MR

and MR follow from Theorems 1 and 2, respectively.

5 Simulation studies

In this section, we consider structural shifts in the mean of a multivariate series {Xt}. Simulation

studies for the univariate test KSR, the tests for structural breaks in the median, and the tests for

constancy of correlations are all relegated to the supplementary material. Throughout this section,

we set the number of Monte Carlo simulations to 1000, and the significance level to 5%.
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5.1 Data generating processes (DGPs)

DGP1 [Simple homoskedastic errors]. We consider a level shift in a bivariate VAR(1) model.

Put Xt = ΨXt−1 + εt, where Ψ =

0.5 0.0

0.0 0.5

 and {εt} follows an i.i.d. MN (0,I2), where “MN”

stands for a “multivariate normal distribution” and I2 is a 2 × 2 identity matrix. This case is

identical to two independent series generated from a shift in level in a univariate linear AR process

considered by Shao and Zhang (2010), being aligned together to form a bivariate series.

DGP2 [VAR with homoskedastic errors]. Everything else remains the same as in DGP1,

except that we now allow for some cross dependence in {Xt} and {εt}, i.e. Ψ =

0.5 0.1

0.1 0.5

 and

{εt} ∼MN (0,Σε) and Σε =

1.0 0.1

0.1 1.0

 .

DGP3 [VAR with conditional heteroskedastic errors]. This case is similar to DGP2, except

that now the error terms are conditionally heteroscedastic, such that {εt} follows a GARCH(1,1)

process

εt = Σ
1/2
t et, σ2i,t = (1− α1 − β1) + α2

1 ε
2
i,t−1 + β1σ

2
i,t−1, i = 1, 2,

where Σt =

σ21,t 0

0 σ22,t

, (α1, β1) = (0.1, 0.79), and {et} is a vector of innovations following an

i.i.d. MN (0,Σε).

DGP4 [VAR with unconditional heteroskedastic errors]. This case resembles DGP2 and

DGP3, except that now there exists a structural break in volatilities:

σ2i,t = σ0 [1 + δI (t > n/2)] , σ0 = δ = 1, i = 1, 2.

We consider the following structural breaks, and set η ∈ {0.5, 1.0, . . ., 2.0}.

(i) Level shift:

Yt =

 Xt, 1 ≤ t ≤ ⌊n/2⌋ ,

η +Xt, ⌊n/2⌋+ 1 ≤ t ≤ n.
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(ii) Smooth changes/multiple breaks:

Yt = Xt + η (t/n) .

5.2 Structural breaks in mean

Given the presence of conditional/unconditional heteroskedastic errors in DGP3 and DGP4, we

consider the LDL decomposition of the sample variance VAR prewhitened errors {êt}. This is

because, under DGP3 and DGP4, the LDL decomposition based on the sample variance of {Xt}

leads to a slightly over-inflated size, when the sample size n is small.10

The results for size, power, and size-adjusted power for the proposed EKS test and Shao and

Zhang’s (2010) G test are summarized in Table 3. The EKS test demonstrates reasonable size and

power. The size performance of the EKS test is better than that of the G test. On the other hand,

the G test has higher power under the single structural break in (i), a result that aligns with our

expectation, since the G test is formulated under one structural break point. However, its power

performance is worse than EKS under smooth changes/multiple structural breaks in (ii).

5.3 Further discussion

In the supplementary material, we compare the performances of the proposed univariate KSR test

with Shao and Zhang’s (2010) G test, the KS tests using the SN approach of Shao (2010) and

Lobato (2001) (KSV ), and the KS0 test based on standard asymptotics. We also compare the

performance of our proposed KSR test with Zhang and Lavitas’s (2018) T test. Furthermore, we

consider the structural breaks in the median for the same DGPs in Section 5.1. Finally, we apply

the proposed ESK test to test the constancy of the correlation matrix. We report powers using

both asymptotic and empirical critical values respectively, we place our focus to the size-adjusted

power of various tests for a fair comparison. The main findings are summarized as follows.

First, unlike the KSV test, our proposed KSR test does not suffer from the notorious decreasing

power problem when the break size increases, which is illustrated by Figure 1 in Shao and Zhang

(2010). Moreover, because there is no need to use forward and backward summations as in the G
10 The results are available from the authors upon request.
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Table 3: Sizes, power, and size-adjusted power of the EKSR(2) and G(2) tests for detecting struc-
tural change(s) in the mean.

n=250 n=500
η DGP1 DGP2 DGP3 DGP4 DGP1 DGP2 DGP3 DGP4

EKS Size 0 0.062 0.068 0.085 0.079 0.057 0.056 0.068 0.065
G 0 0.099 0.095 0.119 0.124 0.112 0.106 0.095 0.092

Break type (i)
0.5 0.437 0.246 0.283 0.217 0.745 0.457 0.496 0.349

Power 1.0 0.898 0.711 0.687 0.569 0.984 0.961 0.951 0.847
1.5 0.868 0.861 0.836 0.770 0.935 0.977 0.950 0.953

EKS 2.0 0.739 0.835 0.803 0.816 0.841 0.935 0.882 0.944
0.5 0.405 0.202 0.209 0.172 0.729 0.446 0.441 0.310

Size-adjusted 1.0 0.882 0.625 0.573 0.478 0.981 0.960 0.923 0.818
power 1.5 0.845 0.810 0.744 0.699 0.929 0.972 0.928 0.939

2.0 0.708 0.776 0.709 0.750 0.831 0.930 0.852 0.928
0.5 0.541 0.394 0.416 0.305 0.808 0.593 0.639 0.458

Power 1.0 0.957 0.857 0.872 0.728 0.996 0.982 0.973 0.932
1.5 1.000 0.988 0.988 0.948 1.000 1.000 0.999 0.997

G 2.0 1.000 0.999 1.000 0.995 1.000 1.000 1.000 1.000
0.5 0.417 0.260 0.242 0.177 0.695 0.435 0.504 0.337

Size-adjusted 1.0 0.916 0.750 0.720 0.591 0.992 0.959 0.960 0.865
power 1.5 0.996 0.969 0.954 0.861 1.000 0.999 0.998 0.993

2.0 1.000 0.995 0.995 0.980 1.000 1.000 1.000 1.000
Break type (ii)

0.5 0.187 0.148 0.145 0.114 0.384 0.236 0.241 0.186
Power 1.0 0.589 0.373 0.364 0.290 0.898 0.699 0.659 0.498

1.5 0.848 0.650 0.676 0.514 0.969 0.936 0.896 0.803
EKS 2.0 0.856 0.785 0.781 0.675 0.927 0.963 0.943 0.932

0.5 0.164 0.111 0.087 0.082 0.365 0.227 0.197 0.157
Size-adjusted 1.0 0.551 0.304 0.282 0.231 0.882 0.682 0.604 0.457

power 1.5 0.812 0.558 0.547 0.439 0.965 0.930 0.867 0.765
2.0 0.829 0.708 0.677 0.589 0.920 0.956 0.918 0.901
0.5 0.295 0.216 0.207 0.195 0.427 0.326 0.323 0.245

Power 1.0 0.562 0.474 0.520 0.380 0.708 0.628 0.610 0.536
1.5 0.733 0.624 0.669 0.599 0.761 0.761 0.754 0.695

G 2.0 0.749 0.749 0.721 0.688 0.789 0.755 0.767 0.745
0.5 0.176 0.123 0.096 0.097 0.282 0.202 0.210 0.163

Size-adjusted 1.0 0.414 0.340 0.321 0.238 0.550 0.464 0.470 0.385
power 1.5 0.591 0.436 0.462 0.428 0.634 0.619 0.611 0.566

2.0 0.624 0.577 0.504 0.498 0.640 0.598 0.639 0.598

test of Shao and Zhang (2010), KSR is much more computationally efficient.

Second, KSR offers superior power and size-adjusted power compared to Shao and Zhang’s

(2010) G test when addressing gradual shifts in mean. On the other hand, the G test typically

surpasses KSR under the one change-point alternative, viz., the specific scenario for which it is
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designed. Notably, simulation studies indicate that the adjusted-range based KSR test might

outperform Shao and Zhang’s (2010) G test even when there is only one change point. This is

particularly the case when the signal-to-noise ratio is low, and when the error terms follow a highly

skewed Gamma distribution. The first set of results further confirms the findings of Mandelbrot

(1972, 1975) regarding the appealing property of almost-sure convergence of the range statistic for

stochastic processes with infinite variance; the second set of results further highlights the robustness

of the range.

Third, under the same DGPs as in Zhang and Lavitas (2018), we find that KSR delivers more

accurate sizes when the level of autocorrelation in {Xt} is small; while Shao and Zhang’s (2010)

G test is more powerful than KSR under the one change-point alternative, KSR has good power

under exact self-canceling breaks; while the G test has low power (DPG2), and both KSR and the

G test have inadequate size-adjusted-powers under oscillating breaks (DGP3).

Fourth, for testing structural breaks in median, Shao and Zhang’s (2010) G test may suffer

from the “over-size” problem; whereas the EKSR(q) test delivers better power and size-adjusted

powers under DGP2, DGP3 and DGP4 - multivariate series with autocorrelation and/or condi-

tional/unconditional heteroskedasticity.

Fifth, the adjusted-range based EKS test for constancy of the correlation matrix, denoted

as HR (q), demonstrates adequate sizes, powers and size-adjusted powers, which show its merit

in volatility modeling. In contrast, Shao and Zhang’s (2015) G test suffers from an “over-size”

problem; its size-adjusted powers are also lower than those of the HR (q) test.

Sixth, the adjusted-range based KS and EKS tests pose a substantially smaller computational

burden. While the theoretical frameworks of Shao and Zhang (2010) and Zhang and Lavitas (2018)

consider the approximately linear statistics in a multivariate context, both of their simulation stud-

ies focus on univariate cases, apparently due to computational cost. The computational burden for

Zhang and Lavitas’s (2018) T test statistic is huge for multivariate cases. In fact, the computational

burden for Zhang and Lavitas’s (2018) T test statistic is so severe that Zhang and Lavitas (2018)

introduce a grid approximation scheme.

Finally, we find, through simulation studies, that for statistical quantities which vary slowly

over time, such as the median, or become “almost constants” as the estimation horizon increases,

such as the correlations, Shao and Zhang’s (2010) G test suffers from an “over-size” problem. This
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is exactly the opposite of the “better size and less power” phenomenon documented in the SN

literature (Shao, 2010; Zhang et al., 2011; Wang and Shao, 2022). Arguably, in spite of formulating

multiple piecewise stationary partitions according to the prespecified change points, in order to

reduce the increases of the denominator/self-normalizer, Shao and Zhang’s (2010) G test still relies

on the SN approach of Lobato (2001) and Shao (2010), whose self-normalizers are the variances

of partial sum processes. For a robust statistical quantity that does not change much (e.g. the

median), and is sometimes even “almost constants” (e.g. the correlation), as the estimation horizon

increases, the variance of such a partial sum can become quite small, which can lead to over-rejection

of the null hypothesis.

6 Empirical application

Motivated by the fact that range has been widely applied in volatility estimation (Parkinson,

1980; Alizadeh et al., 2002; Chou et al., 2010), we consider structural changes in conditional

heteroskedasticity in five of the world’s major stock indices from the 1st January 2012 to the 31st

December 2020. The stock indices considered are the Dow Jones Industrial Average (DJIA), the

S&P Composite Index, the FTSE 100, the CAC 40 and the DAX, which cover the stock markets

in the United States, Canada, the United Kingdom, France and Germany.11

Not all markets open on the same days, but too many observations would get lost if we were to

remove all the days when there were no observations. Thus, we only remove weekend days, we use

the R command “na.interp” in the “forecast” package to interpolate the indices, and compute

the continuously compounded returns, such that rj,t = 100
(
lnPj,,t − lnPj,t−1

)
, where Pj,,t is the

closing price of the stock index j at day t. There are n = 2385 observations in each return series

{rj,t}, 1 ≤ t ≤ n and 1 ≤ j ≤ 5. The rates of return for the DJIA are visualized in Figure 1, which

indicates significant volatility clustering and dependence; particularly, the volatility burst due to

COVID-19.12

The descriptive statistics for daily returns for each stock index are summarized in Table 4.
11 The reason why we only consider five stocks here is due to the “curse of dimensionality”. For a p × p correlation
matrix, there are q = p (p− 1) /2 correlation coefficients to be tested. An increase of one dimension for a p × p
correlation matrix, will result in an increase of p degrees of freedom, i.e. (p+ 1) p/2 − p (p− 1) /2 = p. This will
greatly increase the computational burden, especially for Shao and Zhang’s (2010) G test statistic. 12 The patterns
of rates of return for the other stock indices are similar, and are relegated to the supplementary material due to page
limits.
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Figure 1: Daily continuously compounded rates of return for the DJIA.

Because the return series are serially dependent, the normality test of Bai and Ng (2005) is applied

here, instead of Bera and Jarque’s (1981) JB test.

Table 4: Summary statistics of daily continuously compounded rates of return for five major stock
indices.

Min Max Mean Std Dev Skewness Kurtosis ADF test Normality test
Dow Jones -13.8418 10.7643 0.0398 1.0571 -1.1809 28.8425 -12.3617*** 12.4313***
SP Composite -13.1761 11.2945 0.0171 0.9273 -1.8542 48.2642 -12.4516*** 28.9615***
FTSE 100 -11.5125 8.6667 0.0089 0.9820 -0.8562 14.2314 -13.7099*** 6.6640**
CAC 40 -13.0983 8.0561 0.0188 1.2074 -0.8108 10.7613 -13.7702*** 7.4173**
DAX -13.0549 10.4143 0.0303 1.2123 -0.6684 10.5644 -13.5273*** 6.3851**
Note: ***, ** and * stand for significance at the 1%, 5% and 10% significance levels, respectively.

Following the standard practice in modeling return series by first considering temporal depen-

dence in conditional mean and then conditional heteroskedasticity, we first consider the parameter

constancy of the conditional mean equation for the ARMA(1,1)-GARCH(1,1) models, and then

extend our approach to multivariate conditionally heteroskedastic scenarios, viz. checking the ra-

tionality of both the constant correlation (CC) model (Bollerslev, 1990) and the DCC model (Engle,

2002), both of which are widely used in modeling multivariate volatility in empirical finance.
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6.1 Parameter constancy of the conditional mean equation for the ARMA(1,1)-

GARCH(1,1) models

Similar to Chan et al. (2021), we specify an ARMA(1,1)-GARCH(1,1) model for each stock index

return series, viz.

rt = ϕ0 + ϕ1rt−1 + ξt + ψξt−1 = µt + ξt, (21)

ξt = σtvt, σ2t = ω + αr2t−1 + βσ2t−1, (22)

where (21) and (22) are mean and variance equations respectively, θ = (ϕ0, ϕ1, ψ, ω, α, β) are

parameters, and vt represents an unobservable shock to ξt, which is usually assumed to be i.i.d.

with zero mean and unit variance. The conditional mean of rt based on Ft−1, the information set

at t− 1, is µ̂t = E (rt|Ft−1) = ϕ̂0 + ϕ̂1rt−1 + ψ̂ξ̂t−1.

Thus, the parameter constancy test MR for conditional mean equations is obtained by plugging

S
(
k, θ̂
)

= n−1/2
∑k

t=1 (rt − µ̂t) into (20). Additionally, we compute the KS test statistic, KS0,

based on standard asymptotics and Shao and Zhang’s (2010) G test statistic.13 To analyze the

data, we employ the rolling window estimation, using a window length of 500, which roughly equals

the number of trading days in two years. We set the step size to 1 to ensure that all data points

are included in the analysis. There are 1886 steps/windows in total. The results are summarized

in Table 5. As indicated in Table 4, all the ADF tests strongly reject the null hypothesis of a unit

root, thus favoring stationarity; we would expect the filtered series {rt − µ̂t} to be stationary, with

a constant unconditional mean, which is supported by the low rejection rates for all statistics in

Table 5. The results of MR appear to be more reasonable, as the rejection percentages are close to

the 5% significance level.

The test statistic values are visualized in Figure 2, KS0 is omitted from the visualization, because

it rarely rejects. Throughout the empirical analysis, the blue dashed lines represent the 5% critical

values, and the time index corresponds to the end of each window. From Figure 2, we can see that

the rejections based on KSR are more evenly distributed across the sample, which is consistent with
13 When generating KS0, we apply the default setting for the “getLongRunVar” function in R, where the bandwidth
selection follows Andrews’s (1991) method. Because the SN approach of Shao (2010) can be viewed as a special case
of the fixed-b asymptotics in Kiefer and Vogelsang (2005), when b = 1 and the kernel is the Bartlett kernel, we would
like to keep the use of the kernel the same for comparison purposes.
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Table 5: Average statistics and rejection rates for testing the constancy of parameters for the mean
equation of the ARMA(1,1)-GARCH(1,1) model.

Average statistics Rejection rates
MR KS0 G MR KS0 G

Dow Jones 0.7061 0.7926 10.2119 0.1002 0.0000 0.0212
SP Composite 0.7489 0.9672 13.2733 0.1119 0.0159 0.0366
FTSE 100 0.6651 0.6719 7.9438 0.0440 0.0053 0.0069
CAC 40 0.6825 0.7133 9.6142 0.0429 0.0021 0.0090
DAX 0.6838 0.7403 9.6745 0.0551 0.0011 0.0027

Figure 2: Statistic values for the proposed MR test and the G test.

the overall stationarity of the rates of return of the DJIA, as seen from Table 4.14

6.2 Suitability of the CC model

Next, we consider the suitability of the CC model. Following Andreou and Ghysels’s (2003) pro-

cedure, we test for breaks in conditional correlations for normalized return series. For each rolling

window, we first obtain the σ̂2t for each stock index return series, using ARMA(1,1)-GARCH(1,1)

models, in order to generate the normalized return r∗j,t = rj,t/σ̂j,t, for j = 1, . . . , 5. We then stack

the normalized rates of return to form a 5-variate normalized return vector r∗t =
(
r∗1,t, r

∗
2,t, . . . , r

∗
5,t

)⊺,
and compute the proposed EKS test statistic HR(10) and Shao and Zhang’s (2010) G test statistic

for constancy of correlation coefficients among the 5-variate normalized return series,

ρ̂ij1,k =

∑k
t=1

(
r∗i,t − r∗i,k

)(
r∗j,t − r∗j,k

)
√∑k

t=1

(
r∗i,t − r∗i,k

)2∑k
t=1

(
r∗i,t − r∗i,k

)2 ,
14 The plots based on results from other stock indices reveal the same finding, see the supplementary material for
detail.
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Figure 3: Values of the proposed HR(10) test and the G(10) test for suitability of the CC model.

for 1 ≤ i ≤ j ≤ p, p = 5, where r∗i,k =
∑k

t=1 r
∗
i,t/k and r∗j,k =

∑k
t=1 r

∗
j,t/k. Note ρ̂

ij
1,k is the (i, j)’th

component from the sample correlation matrix calculated from the sub-sample t = 1, 2, . . . , k. In

the supplementary material, we demonstrate, both through theoretical derivation and simulation

studies, the use of the adjusted-range based EKS test and Shao and Zhang’s (2010) G test on testing

constancy of correlation matrices. We perform the proposed EKS test and Shao and Zhang’s (2010)

G test for the 1886 rolling windows, their averaged statistic values are 2.879 and 207.099, and the

rejection rates are 0.411 and 0.371, respectively. Both results clearly suggest that the CC model is

inadequate; in other words, the correlation structures among the 5 stock indices change over time.

The statistic values are visualized in Figure 3, the rejection patterns of both the HR(10) test and

the G test are similar.15

15 The maximum value of the G test statistics is 19, 606.0600, which happens during the window ending on the 12th
of March 2020, the value was removed from visualization as it pushes the plot almost flat. The value of the proposed
HR(10) test on that date is 5.0564, which shows up as a peak as well.
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6.3 Parameter constancy of the DCC model

Like Pape et al. (2021), we consider the suitability of the DCC model. To avoid the “curse of

dimensionality” problem, we consider the following bivariate DCC-GARCH(1,1) model:

r̃t = H
1/2
t ϵt, Ht = DtStDt, (23)

h11,t = c11 + a11,1r̃
2
1,t−1 + g11,1h11,t−1, h22,t = c11 + a22,1r̃

2
1,t−1 + g22,1h22,t−1, (24)

St =

 1 s12,t

s12,t 1

 , s12,t =
q12,t√

q11,t, q22,t
, (25)

q12,t = (1− α− β) + α
r̃1,t−1√
h11,t

r̃2,t−1√
h22,t

+ βq12,t−1, (26)

q11,t = (1− α− β) + α
r̃21,t−1

h11,t
+ βq11,t−1, q22,t = (1− α− β) + α

r̃22,t−1

h22,t
+ βq22,t−1, (27)

where {r̃t} is the filtered rates of returns by removing temporal dependence using ARMA(1,1) mod-

els, Ht is the conditional variance matrix of {r̃t}, ϵt is the innovation at time t, Dt is the diagonal

matrix with conditional standard deviations, and St is the time-varying conditional correlational

matrix at time t. There are eight parameters (α, β, c11, c22, a11,1, a22,1, g11,1, g22,1) in total. The

estimation is conducted by assuming that {ϵt} follows an i.i.d. MN(0, I2). When the multivari-

ate normality of {ϵt} is violated, the ML estimation method becomes the quasi-ML method. As

demonstrated by Pape et al. (2021) and Section 4, testing parameter constancy is equivalent to

testing structural breaks in scores. Similar to the first and second cases, we consider rolling window

estimation, we set the length of the window to be 250 and the step to be 1, and thus, there are

2136 rolling windows in total. The reduction of window length is due to the computational burden

of generating Shao and Zhang’s (2010) G test statistic.

The average statistics and rejection rates are presented in Table 6. The rejection rates based

on G(8) are close to the 5% significance level, while those from MR(8) are considerably higher.

Given that self-normalized tests, based on Shao and Zhang’s (2010) SN approach, tend to suffer

from a “better size but less power” phenomenon, these results suggest that there might be periods

in these stock markets when the DCC-GARCH(1,1) model doesn’t fully capture the underlying

dynamics. This is potentially because we specified the model to be the DCC-GARCH(1,1), which
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is a presumption rather than a model specification informed by the actual volatility dynamics.

Nevertheless, for both the MR(8) and G(8) test statistics, the rejection rates are substantially

lower for the CC model. This suggests the importance of considering dynamic changes in correlation

structures. 16

Table 6: Average MR(8) and G(8) test statistics and rejection rates for constancy of parameter
tests for the bivariate DCC-GARCH(1,1) model.

Average statistics Rejection rates
Stock indices MR(8) G(8) MR(8) G(8)

Dow Jones SP Composite 2.0931 205.8848 0.1625 0.1292
Dow Jones FTSE 100 2.2257 180.3565 0.2168 0.0641
Dow Jones CAC 40 2.1329 195.0296 0.1919 0.0913
Dow Jones DAX 2.1666 197.6643 0.1948 0.1086
SP Composite FTSE 100 2.1357 185.5688 0.1629 0.0782
SP Composite CAC 40 2.0673 183.8792 0.1316 0.0885
SP Composite DAX 2.0864 184.7184 0.1414 0.0815
FTSE 100 CAC 40 2.1365 201.9721 0.1489 0.1287
FTSE 100 DAX 2.1712 186.8859 0.1489 0.0698
CAC 40 DAX 2.2103 193.8053 0.1774 0.0698

7 Conclusion

In this paper, we propose using the adjusted range of the partial sum of a time series as a novel

self-normalizer instead of its sample variance, thus developing an alternative SN approach to that

of Lobato (2001) and Shao and Zhang (2010). Since the range has the well-known robustness

properties, the proposed adjusted-range based SN approach has the appealing properties of being

robust to different types of structural breaks under different DGPs. Three scenarios are consid-

ered: testing for structural change in the mean of a time series, testing for structural changes for

approximately linear statistics, and testing parameter constancy in time series regression. Testing

for constancy of correlation coefficients/matrices is relegated to the supplementary materials, due

to page limits.

Like Shao and Zhang’s (2010) G test, our proposed adjusted-range based KS and EKS test

statistics do not involve any user specified inputs or tuning parameters. And there is also no

need to use forward and backward summations or pre-specification of structural break points, as
16 Visualizations related to these findings are provided in the supplementary material.
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in Shao and Zhang’s (2010) G test statistic, or the construction of a contrast process and a grid

approximation to speed computation even for univariate series as in Zhang and Lavitas (2018). As

a result, the adjusted-range based KS and EKS test statistics can greatly simplify and speed up

the computation involved.

Monte Carlo simulations show that the use of the adjusted-range as a self-normalizer can rectify

the nonmonotonic power problem when the break size increases, which are present under the SN

approach of Shao (2010) and Lobato (2001). In general, adjusted-range based test statistics offer

reasonable sizes and adequate power even under autocorrelation and conditional/unconditional

heteroskedastic errors, whereas Shao and Zhang’s (2010) G test is optimal if the break points are

correctly specified. Notably, simulation studies indicate that the adjusted-range based KSR test

might outperform Shao and Zhang’s (2010) G test even when there is only one change point. This is

particularly the case when the signal-to-noise ratio is low. Such results further confirm the findings

of Mandelbrot (1972, 1975) regarding the appealing property of almost-sure convergence of the

range statistic for stochastic processes with infinite variance. Another notable instance is when

the error terms follow a highly skewed Gamma distribution, the adjusted-range based KSR can

outperforms Shao and Zhang’s (2010) G, which further underscores the robustness of the range.

Our simulation results also confirm the merits of the adjusted-range based KS type statistics.

In particular, for statistical quantities that do not vary much over time, such as medians and

correlation coefficients, Shao and Zhang’s (2010) G test statistic suffers from an “over-size problem”,

which supplements the existing finding that the self-normalized tests usually suffer from a “better

size but less power” problem (Shao, 2010; Zhang et al., 2011; Wang and Shao, 2022). Finally, the

empirical studies demonstrate the merit of the adjusted-range based KS type statistics in examining

the suitability of CC and DCC models.

As a generally applicable SN approach, we could extend the adjusted-range based SN approach

to construct confidence intervals, detecting parameter changes sequentially, estimating the locations

of break points, or extending the structural break tests to functional data possibly of infinite

dimension. These topics will be pursued in subsequent research.
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A Proof of the main results

A.1 The proof of Theorem 1

As discussed in the supplementary material, the lower and upper bounds of KSR are 0 and 1,

respectively. Therefore, to establish the consistency of KSR, it suffices to demonstrate that KSR = 1

almost surely (a.s.). Under the one change-point alternative hypothesis H(1)∗
1 , we have Xt = xt

for 1 < t ≤ k∗ and Xt = yt = xt + δ for k∗ < t ≤ n; finally, set x = n−1
∑n

t=1 xt
p→ µ < ∞ and

s0 = k∗/n.

Consider the mean of Xt,

Xn =
1

n

n∑
t=1

Xt =
1

n

[
k∗∑
t=1

xt +
n∑

t=k∗+1

(xt + δ)

]
=

1

n

[
n∑

t=1

xt + (n− k) δ

]

= x+ (1− s0) δ
p→ µ+ (1− s0) δ <∞ if δ is fixed.

At k = k∗, Tn (k) → ∞ when n→ ∞. To see how, first consider 1 < k ≤ k∗,

Tn (k) = n−1/2
k∑

t=1

(
Xt −Xn

)
= n−1/2

k∑
t=1

[(xt − x)− (1− s0) δ] ,

where x = n−1
∑n

t=1 xt; so for each increment
(
Xt −Xn

)
, there is an “−n−1/2 (1− s0) δ” nega-
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tive/positive shift, if δ is positive/negative; consequently, the resulting CUSUM process Tn (k) has

a deterministic downward/upward trend. However, when k∗ < k ≤ n,

Tn (k) =
1

n1/2

k∗∑
t=1

(
Xt −Xn

)
=

1

n1/2

k∗∑
t=1

[(xt − x)− (1− s0) δ] +

n∑
t=k∗+1

[(xt − x) + δs0] ,

Tn (k) begins to exhibit an upward/downward trend instead; in other words, the trend gets reversed.

Specifically, Tn (k) can be written as

Tn (k) =
1

n1/2

(
k∑

t=1

Xt −Xn

)
=

1

n1/2

[
n− k

n

k∑
t=1

Xt −
k

n

n∑
t=k+1

Xt

]

=
(n− k)

n3/2

k∑
t=1

Xt −
k

n3/2

n∑
t=k+1

Xt =
k (n− k)

n3/2

[
k−1

k∑
t=1

Xt − (n− k)−1
n∑

t=k+1

Xt

]
.

As a result,

Tn (k
∗) =

k∗ (n− k∗)

n3/2

[
(k∗)−1

k∗∑
t=1

(xt)− (n− k∗)−1
n∑

t=k∗+1

(xt + δ)

]

=
k∗ (n− k∗)

n3/2

{
(k∗)−1

k∗∑
t=1

(xt − µ)− (n− k∗)−1
n∑

t=k∗+1

(xt − µ)− δ

}

=
n− k∗

n3/2

k∗∑
t=1

(xt − µ)− k∗

n3/2

n∑
t=k∗+1

(xt − µ)− k∗ (n− k∗)

n3/2
δ;

if s0 ∈ (0, 1), we have

Tn (k
∗)

d→ s
1/2
0 (1− s0)σxB (1)− s0 (1− s0)

1/2 σxB̂ (1)− s0 (1− s0)
(
n1/2δ

)
,

where B (1) and B̂ (1) are two independent copies, and σ2x is the LRV of x. Thus, if δ >

0, Tn (k
∗) → −∞ and max1≤k≤nTn (k) /Tn (k

∗) = op (1); and if δ < 0, Tn (k
∗) → ∞ and

min1≤k≤nTn (k) /Tn (k
∗) = op (1).

Consequently, when δ > 0, and as n→ ∞,

KSR =
max1≤k≤n |Tn (k)|

max1≤k≤nTn (k)−min1≤k≤nTn (k)
=

|Tn (k
∗)|

max1≤k≤nTn (k)− Tn (k∗)
= 1 a.s.
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When δ < 0, and as n→ ∞,

KSR =
max1≤k≤n |Tn (k)|

max1≤k≤n |Tn (k)| −min1≤k≤nTn (k)
=

|Tn (k
∗)|

Tn (k∗)−min1≤k≤nTn (k)
= 1 a.s.

If δ = n−1/2η and η ̸= 0, we have

Tn (k
∗)

d→ s
1/2
0 (1− s0)σxB (1)− s0 (1− s0)

1/2 σxB̂ (1)− s0 (1− s0) η.

As η → ∞, Tn (k
∗) → −∞, and max1≤k≤nTn (k) /Tn (k

∗) = op (1); while as η → −∞, Tn (k
∗) →

∞, and min1≤k≤nTn (k) /Tn (k
∗) = op (1); thus, as n→ ∞ and |η| → ∞, we have KSR = 1 a.s.

A.2 Proof of Theorem 2

The proof of Theorem 2 is similar to that of Theorem 1. Tn (k) =
(
T
(1)
n (k) , . . . ,T

(m)
n (k)

)⊺
, where

T
(i)
n (k) = n−1/2

∑k
t=1

(
Xi,t −Xi,n

)
and i = 1, . . . ,m. Consider the case when C is an identity

matrix, or equivalently, {Xi,t} are independent of each other, EKSR(m) can be expanded such that

EKSR(m) = max
1≤k≤n

( T
(1)
n (k)

maxT
(1)
n (k)−minT

(1)
n (k)

)2

+ · · ·+

(
T
(m)
n (k)

maxT
(m)
n (k)−minT

(m)
n (k)

)2


≤
(
KSR (k∗1)

)2
+ · · ·+

(
KSR (k∗m)

)2
, (A.1)

where

KSR (k∗i ) =

 max1≤ki≤n

∣∣∣T(i)
n (ki)

∣∣∣
max1≤ki≤nT

(i)
n (ki)−min1≤k1≤nT

(i)
n (ki)

2

.

KSR (k∗i ), i = 1, . . . ,m, are independent copies of each other; and “=” in (A.1) holds when k =

k∗1 = · · · = k∗m, which is precisely the alternative hypothesis under consideration.

Following the proof of Theorem 1, KSR (k∗i ) attains its maximum at k∗i which converges to 1.

Therefore,

EKSR(m) =m a.s.

as n→ ∞, when s0 ∈ (0, 1) and∆n ̸= 0 is fixed, alternatively, if∆n = n−1/2η, η =
(
η(1), . . . , η(m)

)⊺ ̸=

0, and |η| → ∞. The conclusion follows.
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When we consider the case when there is cross dependence in Xt, all we need is the finite

variance for Xt to obtain an estimate for C, which is guaranteed by Assumption 1 or Assumption

2. We know that Ĉ p→ C as n→ ∞. The result of Theorem 2 follows from the CMT.

A.3 Proof of Theorem 3

From (14), for 1 ≤ t1 ≤ t2 ≤ n, we have

t∗1

(
θ̂∗1,t1 − θ̂∗1,t2

)
=

(
t1∑
t=1

IF
(
ut; F̃

m
)
− t1
t2
IF
(
ut; F̃

m
))

+

(
t1R̃1,t1 −

t1
t2
R̃1,t2

)
, (A.2)

where F̃m is the mth marginal distribution of ût. From Assumption 2, we have

n−1/2

⌊sn⌋∑
t=1

IF
(
ût; F̃

m
)
⇒ ∆̃Bq (s) . (A.3)

Because ût is a linear/affine transformation of Yt, from Assumption 3, we know that both R̃1,t1

and R̃1,t2 are negligible, which combined with (A.3), indicates the joint convergences of

T∗
n (k) ⇒ ∆̃B (s)

and [
diag

(
R̃n

)]2
⇒ ∆̃diag

(
sup

s∈[0,1]
Bq (s)− inf

s∈[0,1]
Bq (s)

)2

∆̃′.

The result of Theorem 3 follows from the CMT.
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Online supplement for “Kolmogorov-Smirnov type testing for

structural breaks: A new adjusted-range based self-normalization

approach”

Yongmiao Hong, Oliver Linton, Brendan McCabe, Jiajing Sun and Shouyang Wang

In Section S.1, we cover the histograms, empirical densities and critical values for various test

statistics. Discussions on the support of KSR, and the consistency of KSR and EKSR under different

alternative hypotheses are presented in Section S.2. Testing for structural breaks in correlation

coefficients and matrices is covered in Section S.3. In Section S.4, we present some extra simulation

studies. All tables, figures, equations, etc. have prefixes “S” at the front. from the manuscript.

S.1 Histograms, empirical densities and critical values

In this section, we first plot the histogram and densities for KS0, KSV and KSR. Second, we report

the simulation critical values for the EKS test statistics for m = 11, 12, . . . , 20. Third, we visualize

the histograms and empirical densities of the ESK test statistics m = 2, 3, . . . , 20, see Table S.1.

Finally, we visualize the histograms and corresponding empirical densities, see Figure S.2.

(a) KS0
(b) KSW (c) KSR

Figure S.1: Histograms and the corresponding empirical densities for KS0, KSV and KSR.
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Table S.1: Simulated critical values for EKSR(m) for m = 11, 12, . . . , 20.

m\Level 10.0% 5.0% 2.5% 1.0% 0.5% 0.1%
m = 11 2.9760 3.1715 3.3515 3.5603 3.6912 4.1093
m = 12 3.1716 3.3744 3.5563 3.7659 3.9302 4.2577
m = 13 3.3709 3.5771 3.7660 3.9903 4.1375 4.4623
m = 14 3.5513 3.7740 3.9712 4.1957 4.3488 4.6842
m = 15 3.7345 3.9558 4.1637 4.4111 4.6053 5.0097
m = 16 3.9228 4.1404 4.3300 4.5910 4.8104 5.2115
m = 17 4.1056 4.3328 4.5168 4.7781 4.9707 5.4001
m = 18 4.2867 4.5176 4.7264 4.9975 5.1839 5.6011
m = 19 4.4633 4.7065 4.9491 5.2263 5.3437 5.7193
m = 20 4.6387 4.9122 5.1479 5.3868 5.5574 5.9653

2



(a) m = 2 (b) m = 3 (c) m = 4 (d) m = 5

(e) m = 6 (f) m = 7 (g) m = 8 (h) m = 9

(i) m = 10 (j) m = 11 (k) m = 12 (l) m = 13

(m) m = 14 (n) m = 15 (o) m = 16 (p) m = 17

(q) m = 18 (r) m = 19 (s) m = 20

Figure S.2: Histograms and the corresponding empirical densities for EKSR(m) whenm = 2, . . . , 20.
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S.2 The support of KSR, and the consistency of KSR and EKSR

under other alternative hypotheses

S.2.1 The support of KSR

Here we demonstrate that the lower and upper bounds of KSR are 0 and 1, respectively. Nev-

ertheless, it converges to a specific and well-defined distribution under the null hypothesis. The

discussion largely follows the work of Pitman and Yor (1999). Specifically, Smirnov (1939) shows

that the joint distribution of a pair of non-negative random variables (I,M) is

Pr(I ≤ a,M ≤ b) =

∞∑
k=−∞

exp
[
−2k2 (a+ b)2

]
−

∞∑
k=−∞

exp
{
−2 [b+ k (a+ b)]2

}
, (S.1)

for a, b ≥ 0.

Following Doob (1949), we construct (I,M) such that

I := − inf
0≤s≤1

B (s) and M := sup
0≤s≤1

B (s) .

Thus, we have I ∨M = sup0≤s≤1 |B (s)| and (I +M) = sups∈[0,1] B (s)− infs∈[0,1] B (s), where “∨”

denotes inclusive disjunction. We have

Pr (I ∨M ≤ b) =

∞∑
k=−∞

(−1)k exp
(
−2k2b2

)
(S.2)

and

Pr (I +M > b) = 2
∞∑
k=1

(
4k2b2 − 1

)
, exp

(
−2k2b2

)
, (S.3)

see Pitman and Yor (1999) for detailed origins of (S.2) and (S.3).

As observed by Chung (1976), the distribution of I ∨M and I +M can be characterized by the

following Laplace transform

E exp

(
−1

2
λ2 (I ∨M)2

)
=

π
2λ

sinh
(
π
2λ
) (S.4)
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and

E exp

(
−1

2
λ2 (I +M)2

)
=

(
π
2λ

sinh
(
π
2λ
))2

. (S.5)

Consequently, the law of (I +M)2 is equal to the law of the sum of two independent copies

of (I ∨M)2. Following Pitman and Yor (1999), for x ≥ 0, y ≥ 0, denote T (3)
x,y as the first hitting

time of y by a BES
(3)
x process

(
R

(3)
x,t , t ≥ 0

)
, viz. a three-dimensional Bessel process that starts

at x, which can be constructed as R(3)
x,t :=

√
(x+B1,t)

2 +B2
2,t +B2

3.t, where the (Bi,t, t ≥ 0) for

i = 1, 2, 3 are the independent standard Brownian motions that start at 1. Thus, for y > 0,

E exp

(
−1

2
λ2T

(3)
0,y

)
=

yλ

sinh (yλ)
,

so (S.4) and (S.5) indicate that

(I ∨M)2
d
= T

(3)
0,π/2 and (I +M)2

d
= T

(3)
0,π/2 + T̂

(3)
0,π/2, (S.6)

where “ d
=” stands for equivalence in distribution, and T̂

(3)
0,π/2 is an independent copy of T (3)

0,π/2.

Because the supports for T (3)
0,π/2 and T̂ (3)

0,π/2 are positive by construction, KSR is bounded between

0 and 1. Furthermore, because T̂ (3)
0,π/2 is an independent copy of T (3)

0,π/2, KSR converges to a well-

defined distribution.

S.2.2 The consistency of KSR and EKSR under a single jump

As suggested by one of the referees, here we consider the following alternative hypothesis

H̃(1)∗
1 : E (X1) = · · · = E (Xk∗−1) = E (Xk∗+1) = · · · = E (Xn) and E (Xk∗) ̸= E (Xk∗−1) .

First, consider the case when {Xt} is univariate.

Theorem S.1. Suppose that Assumption 1 holds. If δ = O
(
n3/2+ζ

)
, where ζ > 0, then Pr

(
KSR > cα

)
=

1 as n→ ∞.

Proof. Let E (Xk∗) − E (Xk∗−1) = δ, where i = 1, . . . , k∗ − 1, k∗ + 1, . . . , n. Denote Xt = xt for

i = 1, . . . , k∗ − 1, k∗ + 1, . . . , n and Xt = xt + δ for i = k∗; set E (xt) = µ < ∞, var(xt) = σ2x and

s0 = k∗/n.
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Consider the mean of Xt,

Xn =
1

n

n∑
t=1

Xt =
1

n

[
n∑

t=1

xt + δ

]
= x+ n−1δ,

where x = n−1
∑n

t=1 xt. The CUSUM process is

Tn (k) = n−1/2
k∑

t=1

(
Xt −Xn

)
= n−1/2

k∑
t=1

[
xt −

1

n

(
n∑

t=1

xt + δ

)]

= n−1/2
k∑

t=1

[
xt −

1

n

(
n∑

t=1

xt

)
− δ

n

]

= n−1/2
k∑

t=1

(xt − x)− n−3/2δ, (S.7)

where n−1/2
∑k

t=1 (xt − x) ⇒ σxB (s) and s = k/n. At k∗

Tn (k
∗) = n−1/2

k∗∑
t=1

(xt − x)− n−3/2δ,

where n−1/2
∑k∗

t=1 (xt − x) ⇒ σxB (s0).

If δ = O
(
n3/2+ζ

)
> 0, where ζ is an arbitrarily small positive number, we have Tn (k

∗) → −∞

as n → ∞, and Pr (max1≤k≤nTn (k) = ∞) = 0, largely due to the presence of “n−3/2δ” in (S.7);

consequently,

KSR =
max1≤k≤n |Tn (k)|

max1≤k≤nTn (k)−min1≤k≤nTn (k)
=

|Tn (k
∗)|

max1≤k≤nTn (k)− Tn (k∗)
= 1 a.s.

Similarly, if δ = O
(
n3/2+ζ

)
< 0, we have Tn (k

∗) → ∞ as n→ ∞, and Pr (min1≤k≤nTn (k) = −∞) =

0, thus,

KSR =
max1≤k≤n |Tn (k)|

max1≤k≤n |Tn (k)| −min1≤k≤nTn (k)
=

|Tn (k
∗)|

Tn (k∗)−min1≤k≤nTn (k)
= 1 a.s.

Otherwise, the single structural jump δ at the location k∗ would be undetectable.

Second, we consider the case when {Xt} is m-dimensional.

Theorem S.2. Suppose that 7 holds, and ∆n = n−1/2η ̸= 0, then Pr
(
EKSR(m) > Cα

)
= 1 as
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n→ ∞.

Proof. Set E (Xk∗) − E (Xk∗−1) = ∆n =
(
∆

(1)
n , . . . ,∆

(m)
n

)⊺
, where i = 1, . . . , k∗ − 1, k∗ +

1, . . . , n. From Appendix A.2, we know that Tn (k) =
(
T
(1)
n (k) , . . . ,T

(m)
n (k)

)⊺
, where T

(i)
n (k) =

n−1/2
∑k

t=1

(
Xi,t −Xi,n

)
and i = 1, . . . ,m. Consider the case when C is an identity matrix; or

equivalently, {Xi,t} are independent of each other; EKSR(m) can be expanded such that

EKSR(m) = max
1≤k≤n

( T
(1)
n (k)

maxT
(1)
n (k)−minT

(1)
n (k)

)2

+ · · ·+

(
T
(m)
n (k)

maxT
(m)
n (k)−minT

(m)
n (k)

)2


= max
1≤k≤n




∣∣∣T(1)
n (k)

∣∣∣
maxT

(1)
n (k)−minT

(1)
n (k)

2

+ · · ·+


∣∣∣T(m)

n (k)
∣∣∣

maxT
(m)
n (k)−minT

(m)
n (k)

2


≤
(
KSR,(1)

)2
+ · · ·+

(
KSR,(m)

)2
. (S.8)

where

KSR,(i) =

 max1≤ki≤n

∣∣∣T(i)
n (ki)

∣∣∣
max1≤ki≤nT

(i)
n (ki)−min1≤k1≤nT

(i)
n (ki)

2

.

The equality in (S.8) holds when k = k∗1 = · · · = k∗m, which is precisely so under H̃(1)∗
1 . Thus, if

∆n = O
(
n3/2+ζ

)
, we have KSR,(i)=1 a.s and EKSR(m) =m a.s. When we consider the case when

there is cross dependence in Xt, all we need is the finite variance for Xt to obtain a consistent

estimate for C, i.e. Ĉ p→ C as n → ∞; which is guaranteed by Assumption 1 or Assumption 2.

The consistency of EKSR(m) follows from the CMT.

S.2.3 Further discussion

KSR does not diverge to ∞ under alternative, its consistency is demonstrated through showing that

KSR = 1 a.s. as n→ ∞. This requires that the CUSUM process Tn (k) to be “well-behaved” under

the alternative, such that the structural break(s) should push Tn (k
∗) to be∞ or −∞ as n→ ∞, but

at the same time ensuring min1≤k≤nTn (k) /Tn (k
∗) = op (1) or max1≤k≤nTn (k) /Tn (k

∗) = op (1),

respectively.

This is general enough to include many types of alternative hypotheses, e.g. the exact self-

canceling breaks, namely, breaks that preserve the average of Xt. Suppose that there are nb

structural breaks, which are sparse in the sense that nb/n = O(1) and nb is even. Take DGP2 in

7



Section S.4.2 for example, in that case nb = 2, set Xt = xt for 1 < t ≤ ⌊n/3⌋, Xt = xt + δ for

⌊n/3⌋ < t ≤ 2n/3, Xt = xt − δ for ⌊2n/3⌋ < t ≤ n, and finally, set E (xt) = µ <∞; the average of

Xn is

Xn =
1

n

n∑
t=1

Xt =
1

n

⌊n/3⌋∑
t=1

xt +

⌊2n/3⌋∑
t=⌊n/3⌋+1

(xt + δ) +

n∑
t=⌊2n/3⌋+1

(xt − δ)


= x

p→ µ.

It is not difficult to show that KSR = 1 a.s. as n→ ∞ under such an alternative. However, KSR has

insufficient power, when the breaks are oscillating, possibly with different length and/or magnitude

of level shifts, so much so that the breaks do not cancel each other out. As n→ ∞, it is possible for

max1≤k≤nTn (k) = ∞, min1≤k≤nTn (k) = −∞, and min1≤k≤nTn (k) /max1≤k≤nTn (k) ̸= op (1);

e.g. in DGP3 in S.4.2.

S.3 Correlation coefficient and matrix

In this section, we examine additional statistical quantities that are crucial in volatility modeling

and subsequent portfolio optimization, namely the correlation coefficient and matrix. In particular,

as the dimension increases in the multivariate case, the number of parameters in a covariance matrix

expands rapidly, resulting in the “curse of dimensionality”. To address this issue, the correlation

structures must be simplified. Commonly used structures include the CC model (Bollerslev, 1990),

the diagonal model (Bollerslev et al., 1988), the DCC model (Engle, 2002), and the orthogonal or

principal component GARCH method (Alexander, 1998). The validity of these models is based on

the assumption that the correlation structure is stable over time, which may not hold in practice.

Failure to incorporate structural breaks in correlations, should they exist, will inevitably result in

poor estimates of volatilities and, thus, suboptimal portfolio management.
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S.3.1 Correlation coefficient

First, we consider the correlation coefficients

ρt =
cov (Xt, Yt)√
var (Xt) var (Yt)

of a bivariate random vectors (Xt, Yt), t = 1, 2, . . . , n. The hypotheses of interest are

H(3)
0 : ρ1 = · · · = ρn = ρ0,

versus

H(3)
1 : H(3)

0 is false.

Wied et al. (2012) introduce the KS test

Wn = sup
s∈[0,1]

D̂
τn (s)√
n

∣∣ρ̂1,τn(s) − ρ̂1,n
∣∣ , (S.9)

where τn (s) = [2 + s (n− 2)], s ∈ [0, 1], ρ̂1,τn(s) is the sample correlation coefficient calculated from

the sub-sample t = 1, 2, . . . , τn (s) and D̂−2 is a consistent estimator for the LRV of
√
nρ̂1,n; see

Wied et al. (2012) for details.

Assumption S.1. For Ut =
(
X2

t − E
[
X2

t

]
,
(
Y 2
t − E

[
Y 2
t

])
, Xt − E [Xt] , Yt − E [Yt] , XtYt − E [XtYt]

)⊺
and St =

∑t
j=1 Uj, there exists a finite and positive definite matrix D1, such that D1 = limn→∞E

[
n−1SnS

⊺
n

]
.

Assumption S.2. The r-th absolute moment of the components of Ut are uniformly bounded for

some r > 2.

Assumption S.3. The vector (Xt, Yt) is L2 near-epoch dependent (NED) with a size of − (r − 1) / (r − 2),

where r is from Assumption S.2, and constants {ct}, t ∈ Z, on a sequence {Vt}, t ∈ Z, which is

α-mixing of size ϕ∗ = −r/ (r − 2), i.e., ∥(Xt, Yt)− E ((Xt, Yt)|σ (Vt−m, . . . , Vt+m))∥2 < ctνm with

νm → 0, such that ct ≤ 2 ∥Ut∥2 with Ut from Assumption S.1 and the L2-norm ∥·∥2.

Assumption S.4. The moments E
(
X2

t

)
, E
(
Y 2
t

)
, E (Xt), E (XtYt) are uniformly bounded and “al-

most” constant, in the sense that the derivations dt from the respective constants satisfy limn→∞ n−1/2
∑n

t=1 |dt| =

limn→∞ n−1/2
∑n

t=1 d
2
t = 0.
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Assumption S.5. For a bounded function g that is not constant and that can be approximated

by step functions such that the function
∫ z
0 g (u) du − z

∫ 1
0 g (u) du is different from 0 for at least

one z ∈ [0, 1], it holds that E
(
X2

t

)
= a2 + n−1/2a2g (t/n), E

(
Y 2
t

)
= a3 + n−1/2a3g (t/n) and

E (XtYt) = a1 + n−1/2a1g (t/n), while E (Xt) and E (Yt) remain constant.

Assumptions S.1-S.5 are identical to those imposed by Wied et al. (2012) and Choi and Shin

(2020). In particular, Assumptions S.4 and S.5 regulate the correlations, so that they are “almost”

constant. So much so, the resulting correlation sequence {ρt} satisfies Assumptions 2.1 from Phillips

(1987) trivially. Under Assumptions S.1-S.4, or Assumptions S.1-S.3 and S.5, we have

Wn
d→ sup

s∈[0,1]
|B (s)|

The performance of Wn depends heavily on the accuracy of the LRV estimator of D−2. Wied et

al. (2012) use a kernel-based LRV for D−2; see Appendix A.1 in Wied et al. (2012) for detail.

Choi and Shin (2020) find, through simulation studies, that Wn suffers from size distortions

under persistent autocorrelation and heteroskedasticity, and propose to use Shao and Zhang’s (2010)

G test statistic, such that

Qn = sup
s∈[0,1]

s2
(
1− s2

) (
ρ̂1,⌊ns⌋ − ρ̂⌊ns⌋+1,n

)2
1
n

∑⌊ns⌋
t=1

{
t
n

(
ρ̂1,t − ρ̂1,⌊ns⌋

)}2
+ 1

n

∑n
t=⌊ns⌋+1

{(
1− t

n

) (
ρ̂t,n − ρ̂⌊ns⌋+1,n

)}2 (S.10)

= sup
s∈[0,1]

Q1n (s)

Q2n (s)
.

By construction, Qn caters for the one change-point alternative,

H̃(3)
1 : ρ1 = · · · = ρk∗ ̸= ρk∗+1 = · · · = ρn,

where k∗ is the unknown location of the structural break, and 1 < k∗ < n.

Here we propose the use of the adjusted-range based self-normalized KS test instead,

WR
n = sup

s∈[0,1]
R̂−1

n z
∣∣ρ̂1,⌊ns⌋ − ρ̂1,n

∣∣ , (S.11)
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where

R̂n = sup
s∈[0,1]

(
s
[
ρ̂1,⌊ns⌋ − ρ̂1,n

])
− inf

s∈[0,1]

(
s
[
ρ̂1,⌊ns⌋ − ρ̂1,n

])
.

Theorem S.3. Under Assumptions S.1-S.4, or Assumptions S.1-S.3 and S.5, and the null hypoth-

esis H(3)
0 , as n→ ∞,

WR
n

d→ U, (S.12)

where U is defined in (5).

The proof for Theorem S.3 follows from FCLT and CMT.

Proof. From Theorem 1 of Wied et al. (2012), under Assumptions S.1-S.4, or Assumptions S.1-S.3

and S.5, as n→ ∞,
1√
n

sup
s∈[0,1]

z
∣∣ρ̂1,⌊ns⌋ − ρ̂1,n

∣∣ d→ D−1 sup
z∈[0,1]

|B (s)| . (S.13)

Under the same set of assumptions, as n→ ∞,

1√
n
R̂n

d→ D−1

(
sup

s∈[0,1]
B (s)− inf

s∈[0,1]
B (s)

)
, (S.14)

by FCLT. Thus, combining (S.13) and (S.14), and by CMT, the proof for (S.12) is completed.

S.3.2 Correlation matrix

Multivariate volatility models may require the constancy of the correlation matrix instead. As a re-

sult, Wied (2017) extendsWied et al. (2012) to a multivariate setting. LetXt = (X1,t, X2,t, . . . , Xp,t),

t = −1, 0, 1, . . . , n, be a sequence of p-variate random vectors on probability space (Ω,F ,P) with

finite 4-th moments and (unconditional) correlation matrix Rt, whose (i, j)-th component is

ρijt =
cov (Xi,t, Xj,t)√
var (Xi,t) var (Xj,t)

.

The null hypothesis is

H(4)
0 : ρij1 = · · · = ρijn = ρij0 for all i, j;
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and the alternative hypothesis is

H(4)
1 : H(4)

0 is false.

Wied (2017) propose the following correlation matrix break test,

Hn = max
1≤k≤n

kn−1/2
∑

1≤i≤<j≤n

∣∣∣ρ̂ij1,k − ρ̂ij1,n

∣∣∣ =: max
1≤k≤n

kn−1/2 ∥Pk,n∥1 ,

where ρ̂ij1,k =
∑k

t=1

(
Xi,t −Xi,k

) (
Xj,t −Xj,k

)
/

√∑k
t=1

(
Xi,t −Xi,k

)2∑k
t=1

(
Xi,t −Xi,k

)2, Xi,k =∑k
t=1Xi,t/k, Xj,k =

∑k
t=1Xj,t/k, “∥·∥1” is the L1-norm, Pk,n =

(
ρ̂ijk − ρ̂ijn

)
1≤i≤j≤p

∈ Rq and

q = p (p− 1) /2; here kn−1/2 is to compensate for the fact that the correlations are estimated

better in the middle or at the end of the sample (Wied, 2017).

Here we impose the same conditions as in Wied (2017).

Assumption S.6. For

Ut :=



X2
1,t − E

(
X2

1,t

)
...

...

X2
p,t − E

(
X2

p,t

)
X1,t − E (X1,t)

...
...

Xp,t − E (Xp,t)

X1,tX2,t − E (X1,tX2,t)

X1,tX3,t − E (X1,tX3,t)

...
...

Xp−1,tXp,t − E (Xp−1,tXp,t)


and Sj :=

∑j
t=1 Ut, there exists a finite and positive definite [2p+ p (p− 1) /2]× [2p+ p (p− 1) /2]

matrix D1, such that

D1 = lim
n→∞

E

[
1

m
SmS

⊺
m

]
.

Assumption S.7. The r-th absolute moment of the components of Ut are uniformly bounded for

some r > 2, viz. supt∈ZE [∥Ut∥r] <∞.
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Assumption S.8. For r from Assumption S.7, the vector (X1,t, . . . , Xp,t)
⊺ is L2-NED with size

− (r − 1) / (r − 2) and constants {ct}, t ∈ Z, on a sequence {Vt}, t ∈ Z, which is α-mixing of size

ϕ∗ = −r/ (r − 2), i.e.,

∥(X1,t, . . . , Xp,t)− E ((X1,t, . . . , Xp,t)|σ (Vt−l, . . . , Vt+l))∥2 < ctνl

with lim
l→∞

νl = 0, such that ct ≤ 2 ∥Ut∥2 with Ut from Assumption S.6.

Assumption S.9. (X1,t, . . . , Xp,t), t ∈ Z, has a constant mean and variance, i.e., E (Xi,t), i =

1, . . . , P and 0 < E
(
X2

i,t

)
, 1 ≤ i ≤ p, do not depend on t.

Assumptions S.6-S.9 are high dimensional extensions of Assumptions (A1)-(A4) of Wied et

al. (2012). They have a similar effect in regulating the correlation coefficients, so that they are

“almost” constant, and again this validates the Assumptions 2.1 from Phillips (1987), which is used

by Shao and Zhang (2010) to derive the asymptotic distribution of the G test statistic. Under H(4)
0

and Assumptions S.6-S.9,

n−1/2τ (s)
(
ρ̂ij1,τ(s) − ρ̂ij1,n

)
1≤i≤j≤p

⇒ D1/2Bq (s)

on D ([0, 1]), where τ (s) = ⌊2 + τ (n− 2)⌋, D = limn→∞ cov

[
√
n
(
ρ̂ij1,n

)
1≤i≤j≤p

]
is the q× q actual

long-run variance covariance matrix, andD = D1/2
(
D1/2

)⊺. Wied (2017) apply the block bootstrap

method to estimate D, which involves the selection of optimal block size.

To circumvent the selection of tuning parameters when estimating D, Choi and Shin (2021)

apply Shao and Zhang’s (2010) G test statistic,

Qn = sup
s∈[0,1]

s2
(
1− s2

) [∑
1≤i≤j≤p

(
ρ̂ij1,⌊ns⌋ − ρ̂ij⌊ns⌋+1,n

)]2
1
n

∑⌊ns⌋
t=1

[∑
1≤i≤j≤p

t
n

(
ρ̂ij1,t − ρ̂ij1,⌊ns⌋

)]2
+ 1

n

∑n
t=⌊ns⌋+1

[∑
1≤i≤j≤p

(
1− t

n

) (
ρ̂ijt,n − ρ̂ij⌊ns⌋+1,n

)]2 ,
(S.15)

where ρ̂ijm,n is generated from Xt = (X1,t, X2,t, . . . , Xp,t) for t = m,m + 1, . . . , n. According to

Choi and Shin (2021), Qn is designed for a single break as in Shao and Zhang (2010); ρ̂ij1,⌊ns⌋ and

ρ̂ij⌊ns⌋+1,n are in analogue to the forward partial sum before t0 and backward partial sum after t0.
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According to our understanding, the purpose for designing Qn would be to cater for the following

alternative,

ρij1 = · · · = ρijt0 ̸= ρijt0+1 = · · · = ρijn = ρij0 .

However, a close inspection of (S.15) reveals that the actual alternative of Qn is

∑
1≤i≤j≤p

ρij1 = · · · =
∑

1≤i≤j≤p

ρijt0 ̸=
∑

1≤i≤j≤p

ρijt0+1 = · · · =
∑

1≤i≤j≤p

ρijn =
∑

1≤i≤j≤p

ρij0 .

This explains why the Qn of Choi and Shin (2021) does not have powers for alternatives such as

canceling breaks and up-down double breaks, as demonstrated by the simulation studies in Choi

and Shin (2021).

Instead of viewing this setting as a deficiency, Choi and Shin (2021) present it as a strength,

Choi and Shin (2021) find that the non-parametric test for constant correlation matrix by Wied

(2017) exhibits a similar over-size problem, when the number of variables is not small relative to

the dimension of time series; Choi and Shin (2021) attribute such an over-size problem to the (near)

singularity of covariance matrix and argue that Qn can rectify this singularity issue in the variance

estimation.1 However, when p ≫ n, the calculation of covariance/correlation matrix becomes

infeasible, let alone testing for its constancy. We find, through simulation studies, that Shao and

Zhang’s (2010) G test suffers from an “over-size and less power” problem. Because the correlation

coefficients are almost “constants” as the estimation horizon increases, the self-normalizer of Shao’s

(2010) SN approach, i.e. the variance of a partial sum process, would become much smaller in

magnitude. In fact, extensive simulation studies also reveal that for other statistical quantities

that do not vary much, such as the median, Shao and Zhang’s (2010) G test statistic suffers from

an over-size problem as well. This is likely the reason that Choi and Shin (2021) do not apply Shao

and Zhang’s (2010) multivariate G test in testing constancy of correlation matrices.

Here we appeal to a procedure similar to Sections 2.2 and 3 in the manuscript, viz. an

LDL decomposition on the sample variance of Xt to obtain a p-variate ût. Then we evalu-
1Choi and Shin (2020, 2021) find that the correlation constancy tests proposed by Wied et al. (2012) and

Wied (2017) suffer from “over-size” problem under heteroskedasticity and autocorrelation. This is because in these
test statistics, the marginal variances are assumed to be constant under the null hypothesis of constant correla-
tion(Demetrescu and Wied, 2019), which is violated under the simulation setup in Choi and Shin (2020, 2021). The
“over-size” problem can be rectified by examining the filtered series, e.g. normalized/filtered rates of return.
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ate the correlation matrix of ût, and extract the upper triangle components, such that θ̂∗1,k :=(
ρ̃121,k, ρ̃

13
1,k, . . . , ρ̃

23
1,k, . . . , ρ̃

1p
1,k

)
. Similar to testing structural breaks in mean and approximately lin-

ear statistics, we do not need independence among ût. As a matter of fact, when the series are

made to be independent, the correlations also diminish to zero, which defies the purpose of testing

for changes in correlations.2 Such transformation is shown, through simulation studies, to improve

the size performance; see the discussion in Section 5.3 of the manuscript.

Plug θ̂∗1,k into (16), and following the steps from (16) to (18) in Section 3, we can construct the

adjusted-range based EKS test for constancy of the correlation matrix,

HR (q) = max
1≤k≤n−1

T∗
n (k)

⊺ [
diag

{
R2

n

}]−1
T∗
n (k) , (S.16)

which shares the same asymptotic properties as the EKS test statistic as stated in Theorem 3.

Theorem S.4. Under Assumptions S.6-S.9 and the null hypothesis H(4)
0 , as n→ ∞,

HR (q)
d→Wq as n→ ∞,.

where Wq is defined in (10).

See Table 2 for the critical values for HR (q). Theorem S.4 follows closely from Theorem 1 in

Wied (2017).

Proof. From Theorem 1 in Wied (2017), we know that under Assumptions S.6-S.9, as n→ ∞,

τ (s)√
n

(
ρ̂ijτ(s) − ρ̂ijn

)
1≤i≤j≤p

d→ D1/2Bq (s) ,

by an adapted functional delta method, see the appendix of Wied (2017) for detail. Because

ut = C−1Xt is a linear/affine transformation of Xt, we have

T∗
n (k) =

τ (s)√
n

(
ρ̃ijτ(s) − ρ̃ijn

)
1≤i≤j≤p

d→ C−1D1/2Bq (s)

by CMT. The proof of Theorem S.4 then follows from CMT and FCLT.
2We conduct simulation studies on the correlation coefficients evaluated based on the primitive shocks of SVAR

models, and find that the sizes, powers and adjusted-powers are all close to 0. The results are available from the
authors upon request.
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S.4 Simulation studies

In this section, we undertake several analyses and comparisions. Firstly, we compare the perfor-

mance of the KSR test with various other tests in Section S.4.1. Secondly, as recommended by

one of the referees, we examine the same DGPs as in Zhang and Lavitas (2018) in Section S.4.2.

Thirdly, we consider the same DGPs as in Section 5 of the manuscript but with the focus being

the median instead of the mean. Finally, we devote our attention to testing the constancy of the

correlation matrix in Section S.4.4. Sections S.4.1 and S.4.2 concentrate on univariate time series,

while Sections S.4.3 and S.4.1 examine multivariate time series.

S.4.1 Structural breaks in mean

KSR does not suffer from the notorious decreasing power problem as KSV ; see Figure 1 in Shao and

Zhang (2010), which shows that the powers of KSV decrease as the sizes of structural break increase.

Here, we first consider the same DGP as in Shao and Zhang (2010). The poor power performance of

KSV motivated Shao and Zhang (2010) to introduce the G test statistic. Let ut = 0.5ut−1+εt, εt ∼

i.i.d. N (0, 1), t = 1, ..., n and let yt = ut for 1 ≤ t ≤ n/2, and yt = η+ut for n/2+1 ≤ t ≤ n, where

η ≥ 0 and n = 200. From Figure S.3, it is evident that both G and KSR offer increasing power

as the magnitude of change increases. Thus, KSR can rectify the nonmonotonic power problem

of KSV without having to use forward and backward summations as in the G test statistic. This

computational simplicity, together with the fact that KSR can cater for more general alternative

(2) and is a consistent test (Theorem 1 confirms its merits as a valid test).3

Second, we examine the testing of structural breaks in the mean of a univariate series Xt. We

extend the motivating example of Shao and Zhang (2010) (Figure S.3) by considering conditional

heteroskedastic and mixtures normal errors and the increase of autoregressive (AR) coefficients

other than level shift alone. We report sizes, powers, and adjusted-powers of the KSR test statistic,

Shao and Zhang’s (2010) G test statistic, the self-normalized KSV and the KS0, which is the KS

test statistic based on the small-b/standard asymptotics. For KS0, we adopt the Bartlett kernel
3Another advantage of KSR is its ease for computation. Using a MacBook Pro with 2.9 GHz six core Intel i9 CPU

and 32 GB installed memory, generating Plots (S.3a) and (S.3b) took 1.65 hours and 41.25 seconds, respectively.
Both codes employ a parallel structure, so the difference in running time is merely due to the backward and forward
summation when generating the denominator/self-normalizer of Gn.
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(a) G (b) KSR

Figure S.3: The powers for G and KSR under increases in η for n = 200.

and use the bandwidth selection method of Andrews (1991).4

The DGPs are as follows.

DGP1 [AR with conditional heteroskedastic errors]. Consider a stationary AR(1)-GARCH

process.

ut = 0.5ut−1 + ξt,

and ξt follows a stationary GARCH(1,1) process, such that

ξt = σtvt, σ
2
t = 0.1 + 0.45ξ2t−1 + 0.1σ2t−1,

where vt follows a standardized Student-t distribution with 4 degrees of freedom, and t = 1, . . . , n.5

We consider two types of structural breaks under the alternative hypothesis.
4Note that the results using different kernels (e.g., Bartlett, Parzen, and the Quadratic Spectral kernel) and

bandwidth selection methods (e.g., Newey and West’s (1987) and Andrews’s (1991)) are available upon request from
the authors. Moreover, the results based on the fixed-b asymptotics (Kiefer and Vogelsang, 2005), denoted as KS(b),
are omitted for brevity. Generally speaking, when b is close to 1, its performance is similar to that of KSV , while
when b is close to 0, the results are comparable to those of KS0. Nonetheless, it suffers from a nonmonotonic power
problem.

5We also consider more persistent conditional heteroskedastic errors, e.g.

σ2
t = 0.1 + 0.1ξ2t−1 + 0.89σ2

t−1,

where vt follows a standardized Student-t distribution with 5 degrees of freedom. The same pattern persists, except
that the powers and size-adjusted powers are smaller than the current case. The results are omitted here, because
prolonged periods of close to unit-root behavior in financial markets are rare.
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(i) Abrupt structural break:

yt =

 ut, 1 ≤ t ≤ n/2,

η + ut, n/2 + 1 ≤ t ≤ n,

where η = 0.4, 0.8, . . . and 2.0.

(ii) Gradual shift in the unconditional mean:

yt =

 ut, 1 ≤ t ≤ n/2,

α× (t/n)2 + ut, n/2 + 1 ≤ t ≤ n,

where α = 0.2, 0.4, . . . and 0.8.

Strictly speaking, case (i) corresponds to a shift in the unconditional mean in the middle of

the time series, which perfectly aligns with the alternative hypothesis used in Shao and Zhang’s

(2010) G test statistic. Whereas, case (ii) consists of a non-linear trend (smooth change) under the

alternative, which is encompassed in the more general alternative of the KSR test.

Table S.2: Sizes, powers and size-adjusted-powers for KS and G test statistics for structural breaks
in the mean under DGP1 and structural break (i).

n=500 n=1000
η KSR G KSV KS0 KSR G KSV KS0

Sizes 0.0 0.104 0.051 0.017 0.053 0.082 0.061 0.035 0.035
0.4 0.869 0.916 0.000 0.861 0.967 0.993 0.000 0.997

Powers 0.8 0.995 0.999 0.000 0.968 1.000 1.000 0.000 1.000
1.2 1.000 1.000 0.000 0.711 1.000 1.000 0.000 1.000
1.6 0.999 1.000 0.000 0.059 1.000 1.000 0.000 0.998
2.0 1.000 1.000 0.000 0.003 1.000 1.000 0.000 0.463
0.4 0.707 0.916 0.000 0.899 0.946 0.993 0.000 0.998

Size-adjusted 0.8 0.982 0.999 0.000 0.987 1.000 1.000 0.000 1.000
power 1.2 1.000 1.000 0.000 0.848 1.000 1.000 0.000 1.000

1.6 0.999 1.000 0.000 0.148 1.000 1.000 0.000 1.000
2.0 1.000 1.000 0.000 0.005 1.000 1.000 0.000 0.788
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Table S.3: Sizes, powers and size-adjusted-powers for KS and G test statistics for structural breaks
in the mean under DGP1 and structural break (ii).

n=500 n=1000
α KSR G KSV KS0 KSR G KSV KS0

Size 0.0 0.104 0.051 0.017 0.053 0.082 0.061 0.035 0.035
0.2 0.312 0.224 0.013 0.198 0.441 0.368 0.003 0.396

Power 0.4 0.712 0.588 0.001 0.525 0.854 0.712 0.000 0.850
0.6 0.895 0.734 0.000 0.735 0.972 0.756 0.000 0.981
0.8 0.961 0.760 0.000 0.810 0.994 0.728 0.000 0.997
0.2 0.204 0.220 0.025 0.194 0.334 0.336 0.006 0.459

Size-adjusted 0.4 0.526 0.583 0.003 0.513 0.741 0.671 0.000 0.891
power 0.6 0.771 0.730 0.000 0.727 0.934 0.707 0.000 0.992

0.8 0.902 0.757 0.000 0.806 0.985 0.673 0.000 1.000

From Tables S.2 and S.3, it becomes clear that the KSR test exhibits an over-size issue when

the sample size is n = 500, which resolves itself as the sample size increases. This can be attributed

to the KSR being bounded by 1. The KSV test should not be used because of its low power. KS0 is

adequate for small levels of structural breaks, however, it suffers from a nonmonotonic power issue

under the first alternative.

Of course, the results from Table S.2 do not necessarily imply that KSR is inferior to the G test

under the one change-point alternative. Consider the following DGPs.

DGP2 [AR with with gamma-distributed errors]. Consider

ut = 0.5ut−1 + εt,

where εt are i.i.d. Gamma distributed random variables with a shape parameter of 2 and a rate

of 0.2. The Gamma distribution, with the parameters provided, is positively skewed and possesses

a heavier tail compared to the normal distribution. The Gamma distribution is often utilized to

model aggregate insurance claims and intervals between events.

Again, we consider the same structural break type (i) - abrupt structural break. The results are

summarized in Table S.4. Clearly, even under an abrupt level shift and when the errors are highly

skewed with a moderate value of η, KSR demonstrates higher power than the G test of Shao and

Zhang (2010), particularly when η is moderate. This underscores the robustness attributes of the

range statistic.
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Table S.4: Sizes, powers and size-adjusted-powers for KS and G test statistics for structural breaks
in the mean under DGP2 and structural break (i).

n=500 n=1000
η KSR G KSV KS0 KSR G KSV KS0

Sizes 0.0 0.083 0.052 0.018 0.000 0.080 0.063 0.023 0.000
0.4 0.109 0.072 0.014 0.000 0.092 0.066 0.013 0.000

Powers 0.8 0.153 0.089 0.014 0.000 0.168 0.129 0.015 0.000
1.2 0.180 0.117 0.013 0.000 0.225 0.184 0.012 0.000
1.6 0.266 0.194 0.010 0.000 0.300 0.293 0.005 0.000
2.0 0.332 0.258 0.010 0.000 0.409 0.446 0.005 0.000
0.4 0.076 0.071 0.056 0.071 0.066 0.053 0.038 0.058

Size-adjusted 0.8 0.098 0.087 0.059 0.089 0.124 0.113 0.030 0.118
power 1.2 0.131 0.115 0.043 0.110 0.163 0.156 0.025 0.194

1.6 0.193 0.188 0.033 0.188 0.220 0.254 0.010 0.276
2.0 0.244 0.253 0.030 0.242 0.315 0.395 0.011 0.441

We further provide evidence that KSR outperforms the Shao and Zhang’s (2010) G test, espe-

cially under highly dispersed errors, which may even have two modes.

DGP3 [AR with mixture normal errors (i)]. Consider

yt =

 0.1 + 0.5yt−1 + εt, 1 ≤ t ≤ n/2,

0.1 + (0.5 + α) yt−1 + εt, n/2 + 1 ≤ t ≤ n,
(S.17)

where εt follows a non-standard mixture normal distribution, and the probability density function

(PDF) for εt is f (ε) =
∑m

i=1wipi (ε). Set m = 3, w = (w1, w2, w3) = (0.4, 0.2, 0.4); p1, p2, and p3

are normal PDFs with
(
µ(1), σ(1)

)
= (−7.8, 8),

(
µ(2), σ(2)

)
= (15.2, 3), and

(
µ(3), σ(3)

)
= (0.2, 6).

DGP4 [AR with mixture normal errors (ii)]. DGP4 is similar to DGP3, except now we set

m = 2, w = (w1, w2) = (0.5, 0.5); p1 and p2 are normal PDFs with
(
µ(1), σ(1)

)
=
(
µ(2), σ(2)

)
=

(−1, 1).

In both DGP2 and DGP3, µ =
∑m

i=1wiµ
(i) = 0. The histograms and PDFs for εt are presented

in Figure S.4.6

To investigate the asymmetry between the performance of the tests with an increase and decrease

in the AR parameter α, we consider the following structural break.

(iii) Changes in the AR parameter α: We set α to vary from −0.4 to 0.4.
6Note that the histograms are generated based on 5, 000 random draws from the distributions, the PDFs are

approximated using the “density” function in R.
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(a) Mixture normals with two modes. (b) Less dispersed mixture normals.

Figure S.4: Histograms and PDFs for εt under both settings.

The results are summarized in Tables S.5 and S.6.

Table S.5: Sizes, powers and size-adjusted-powers for KS and G test statistics for structural breaks
in the mean under DGP3 and structural break (iii).

n=500 n=1000
α KSR G KSV KS0 KSR G KSV KS0

Size 0.0 0.093 0.048 0.014 0.036 0.086 0.062 0.041 0.050
-0.4 0.112 0.083 0.056 0.077 0.096 0.078 0.050 0.093
-0.3 0.121 0.065 0.032 0.057 0.088 0.070 0.049 0.082
-0.2 0.080 0.060 0.029 0.052 0.078 0.061 0.028 0.061

Power -0.1 0.094 0.057 0.017 0.051 0.077 0.050 0.030 0.039
0.1 0.102 0.061 0.015 0.046 0.086 0.058 0.033 0.048
0.2 0.120 0.069 0.037 0.040 0.119 0.072 0.045 0.066
0.3 0.177 0.104 0.048 0.064 0.168 0.120 0.065 0.074
0.4 0.312 0.183 0.035 0.051 0.287 0.198 0.061 0.132
-0.4 0.046 0.071 0.103 0.100 0.054 0.064 0.080 0.093
-0.3 0.061 0.060 0.065 0.077 0.049 0.057 0.080 0.082
-0.2 0.036 0.054 0.066 0.064 0.037 0.049 0.053 0.062

Size-adjusted -0.1 0.046 0.054 0.058 0.064 0.047 0.041 0.048 0.040
power 0.1 0.054 0.056 0.043 0.058 0.051 0.045 0.040 0.048

0.2 0.056 0.063 0.070 0.059 0.067 0.060 0.071 0.066
0.3 0.104 0.097 0.091 0.084 0.114 0.101 0.092 0.075
0.4 0.223 0.175 0.075 0.078 0.235 0.176 0.090 0.133
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Table S.6: Sizes, powers and size-adjusted-powers for KS and G test statistics for structural breaks
in the mean under DGP4 and structural break (iii).

n=500 n=1000
α KSR G KSV KS0 KSR G KSV KS0

Size 0.0 0.081 0.063 0.022 0.001 0.082 0.043 0.020 0.000
-0.4 0.334 0.431 0.009 0.035 0.527 0.661 0.000 0.128
-0.3 0.250 0.292 0.010 0.005 0.396 0.519 0.005 0.023
-0.2 0.184 0.183 0.013 0.000 0.251 0.285 0.009 0.008

Power -0.1 0.105 0.090 0.012 0.000 0.115 0.124 0.012 0.000
0.1 0.177 0.129 0.013 0.000 0.194 0.176 0.021 0.001
0.2 0.385 0.359 0.003 0.000 0.515 0.593 0.002 0.002
0.3 0.681 0.723 0.002 0.000 0.804 0.896 0.000 0.001
0.4 0.903 0.930 0.000 0.000 0.962 0.990 0.000 0.000
-0.4 0.234 0.396 0.020 0.654 0.389 0.675 0.003 0.899
-0.3 0.158 0.260 0.017 0.454 0.302 0.538 0.012 0.702
-0.2 0.127 0.146 0.034 0.241 0.173 0.304 0.020 0.423

Size-adjusted -0.1 0.072 0.080 0.031 0.119 0.074 0.135 0.031 0.166
power 0.1 0.126 0.114 0.031 0.082 0.143 0.185 0.038 0.144

0.2 0.293 0.326 0.009 0.226 0.419 0.610 0.009 0.538
0.3 0.588 0.698 0.003 0.589 0.736 0.901 0.000 0.962
0.4 0.849 0.917 0.000 0.790 0.939 0.990 0.000 1.000

Table S.5 shows that KSR generally outperforms the G test, which contradicts the previous

findings. Arguably, this is due to the high level of dispersion in the error term; which inflates the

self-normalizer of the G test statistic. Although Shao and Zhang’s (2010) G test statistic involves

backward and forward summation at each k to avoid over-inflation of the self-normalizer, it still

relies on variances of partial sums to construct the self-normalizers. On the contrary, the adjusted-

range is robust under high levels of volatility. In fact, Mandelbrot (1972, 1975) demonstrates the

almost-sure convergence of the range statistic for stochastic processes with infinite variance.

Regarding DGP3, both KSR and the G test statistics have insufficient power when α is negative.

This is because that εt is highly dispersed, or in other words, the signal-to-noise ratio is too low.

For DGP4, Table S.6 indicates as the absolute value of α increases, both KSR and the G test have

reasonable power. However, the G test delivers higher power than the KSR test, which reflects the

formulation of the G test statistic under the one change-point alternative.
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S.4.2 Comparison between the KSR test and Zhang and Lavitas’s (2018)’s T

test

As suggested by one of the referees, we consider the same DGPs studied by Zhang and Lavitas

(2018), and simulate empirical acceptance rates and size-adjusted powers for our KSR test statistic.

The number of Monte Carlo replications is set to 5, 000.

The DGPs are as follows. Let {wt} be independent standard normal random variables, and

{et} be an AR process et = ρet−1 +wt. Let I (·) be the indicator function. We consider the model

Xt = µt + et. t = 1, . . . , n,

with the following change-point alternatives:

DGP1 [one change-point alternative]. µt = dI (i/n > 2/3);

DGP2 [two change-points alternative]. µt = dI (2/3 ≥ i/n > 1/3)− dI (i/n > 2/3)

DGP3 [three change-points alternative]. µt = dI (i/n > 1/4)− dI (3/4 ≥ i/n > 1/2).

The results for empirical acceptance rates are summarized in Table S.7. We can see that KSR

delivers more accurate sizes when the ρ is smaller in magnitude. Similarly, Zhang and Lavitas’s

(2018) T test suffers from a size problem when ρ = 0.8. Note that the results for Shao and Zhang’s

(2010) G and Zhang and Lavitas’s (2018) T tests can be found from Table 1 in Zhang and Lavitas

(2018), where “G” is denoted as “SZ101” and Zhang and Lavitas’s (2018) T as “UCbSN”.

Table S.7: Empirical acceptance rates for KSR when testing change points in the mean and median
of DGP1, DGP2, and DGP3 with different dependence strengths.

Mean Medium
ρ \ Level 10% 5% 10% 5%

0.3 0.861 0.919 0.855 0.917
0.6 0.838 0.904 0.840 0.908
0.8 0.804 0.873 0.821 0.884
-0.3 0.891 0.946 0.867 0.930
-0.6 0.906 0.957 0.875 0.934
-0.8 0.926 0.972 0.865 0.923

Perhaps due to use of the grid approximation procedure, Zhang and Lavitas (2018) only report

size-adjusted powers; we also report the size-adjusted power for our proposed KSR test; see Table

S.8. Tn has the best size-adjusted powers in most cases. Shao and Zhang’s (2010) G outperforms
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our KSR under the one change-point alternative (DGP1); whereas KSR outperforms Shao and

Zhang’s (2010) G test under DGP2, the exact self-canceling break. The KSR test lacks power

against oscillating breaks (DGP3); see the discussion in Section S.2.3 for detail. Note that the

results for Shao and Zhang’s (2010) G test or Zhang and Lavitas’s (2018) T test can be found from

Tables 2, 3, and 4 of Zhang and Lavitas (2018) for DGP1, DGP2 and DGP3, respectively.

Table S.8: Size-adjusted powers for KSR when testing change points in the mean and median under
DGP1, DGP2, and DGP3 with different dependence strengths.

DGP1 DGP2 DGP3
ρ d Mean Medium Mean Medium Mean Medium
0.3 0.2 0.138 0.106 0.106 0.088 0.051 0.054

0.4 0.374 0.290 0.229 0.182 0.038 0.045
0.6 0.672 0.529 0.318 0.249 0.015 0.024
0.8 0.846 0.704 0.420 0.334 0.003 0.013
1.0 0.941 0.846 0.507 0.432 0.000 0.004
2.0 1.000 0.998 0.826 0.834 0.000 0.008
3.0 1.000 0.999 0.959 0.979 0.000 0.261

0.6 0.2 0.092 0.075 0.082 0.067 0.056 0.049
0.4 0.170 0.133 0.138 0.105 0.054 0.049
0.6 0.317 0.248 0.180 0.143 0.043 0.046
0.8 0.468 0.387 0.225 0.190 0.030 0.035
1.0 0.617 0.517 0.286 0.229 0.013 0.024
2.0 0.972 0.909 0.497 0.460 0.000 0.008
3.0 1.000 0.982 0.694 0.726 0.000 0.086

0.8 0.2 0.062 0.063 0.052 0.058 0.048 0.048
0.4 0.083 0.078 0.067 0.065 0.057 0.060
0.6 0.121 0.116 0.090 0.089 0.050 0.051
0.8 0.164 0.157 0.116 0.105 0.049 0.055
1.0 0.224 0.216 0.140 0.136 0.050 0.055
2.0 0.591 0.544 0.222 0.207 0.008 0.031
3.0 0.848 0.780 0.282 0.269 0.000 0.037

S.4.3 Performance of EKSR for structural break in median

Here we consider the same set of DGPs and structural breaks as in Section 5.2. When the mean

of a time series changes, so should its median. We use LDL decomposition of the original series

{Xt} to obtain {ût}. As briefly discussed in Section 2.2 of the manuscript, LDL decomposition on

the sample variance of the VAR prewhitened errors {êt} may lead to insufficient power for robust

statistical quantities such as the median. The number of Monte Carlo simulation is set to 1, 000.

The results for sizes, powers, and adjusted powers for our EKSR (2) test and Shao and Zhang’s
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(2010) G(2) test are summarized in Tables S.9-S.11.

Table S.9: Sizes for the EKSR(2) and G(2) tests for testing structural change(s) in the median.

DGP1 DGP2 DGP3 DGP4
n EKS G EKS G EKS G EKS G
250 0.096 0.127 0.102 0.154 0.113 0.218 0.120 0.090
500 0.083 0.131 0.106 0.139 0.101 0.193 0.105 0.079

Table S.10: Powers and size-adjusted powers of the EKSR(2) and G(2) tests for detecting structural
change(s) in the median under the single structural break type (i).

n=250 n=500
Test η DGP1 DGP2 DGP3 DGP4 DGP1 DGP2 DGP3 DGP4

0.5 0.443 0.413 0.525 0.344 0.721 0.628 0.704 0.451
Power 1.0 0.945 0.859 0.862 0.726 0.999 0.990 0.965 0.915

1.5 0.999 0.976 0.952 0.949 1.000 1.000 0.989 0.996
EKS 2.0 1.000 0.999 0.958 0.985 1.000 1.000 0.994 1.000

0.5 0.308 0.287 0.388 0.173 0.637 0.428 0.597 0.294
Size-adjusted 1.0 0.884 0.761 0.774 0.510 0.997 0.951 0.933 0.816

power 1.5 0.989 0.932 0.891 0.820 1.000 0.998 0.975 0.985
2.0 0.998 0.987 0.892 0.921 1.000 0.999 0.983 0.999
0.5 0.495 0.410 0.554 0.229 0.707 0.586 0.731 0.339

Power 1.0 0.911 0.809 0.896 0.537 0.988 0.970 0.979 0.756
1.5 0.999 0.981 0.978 0.814 1.000 0.998 0.997 0.973

G 2.0 0.999 0.997 0.994 0.958 1.000 1.000 1.000 0.998
0.5 0.293 0.200 0.217 0.144 0.488 0.369 0.408 0.274

Size-adjusted 1.0 0.802 0.575 0.632 0.396 0.954 0.875 0.863 0.693
power 1.5 0.982 0.888 0.880 0.721 0.999 0.993 0.976 0.956

2.0 0.998 0.988 0.962 0.901 1.000 1.000 0.994 0.995

In most of the cases, our proposed EKS test provides more accurate sizes than Shao and Zhang’s

(2010) G test. Instead of suffering from the “better size but less power” problem (Shao, 2010; Zhang

et al., 2011; Wang and Shao, 2022), the G test suffers from an “over-size” issue; see Section 5.3 in

the manuscript for further discussion.

Moreover, it is clear that Shao and Zhang’s (2010) G test statistic has a similar power perfor-

mance to our EKS test statistic under structural break (i) and DGP1, which is expected, because

the G test statistic is formulated under one break point. However, the EKS test delivers better

powers and size-adjusted powers under DGP2, DGP3, and DGP4 - multivariate series with au-

tocorrelation or/and conditional/unconditional heteroskedastic errors under both structural break

types (i) and (ii). These findings confirm the validity of EKSR (q) as a matrix statistic and the

robustness of the adjusted-range based SN.
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Table S.11: Powers and size-adjusted powers of the EKSR(q) and G(q) tests for detecting structural
change(s) in the median under structural break type (ii).

n=250 n=500
Test η DGP1 DGP2 DGP3 DGP4 DGP1 DGP2 DGP3 DGP4

0.5 0.236 0.259 0.384 0.211 0.380 0.330 0.468 0.259
Power 1.0 0.681 0.598 0.693 0.490 0.887 0.818 0.882 0.683

1.5 0.915 0.859 0.884 0.725 0.996 0.975 0.959 0.919
EKS 2.0 0.979 0.968 0.918 0.889 0.998 0.998 0.974 0.988

0.5 0.138 0.153 0.259 0.086 0.300 0.194 0.343 0.160
Size-adjusted 1.0 0.525 0.464 0.539 0.276 0.824 0.637 0.794 0.511

power 1.5 0.817 0.732 0.799 0.502 0.988 0.908 0.914 0.814
2.0 0.941 0.902 0.842 0.712 0.998 0.988 0.955 0.965
0.5 0.323 0.297 0.388 0.145 0.408 0.342 0.461 0.170

Power 1.0 0.565 0.511 0.635 0.285 0.726 0.669 0.696 0.392
1.5 0.705 0.640 0.730 0.405 0.767 0.792 0.788 0.522

G 2.0 0.749 0.746 0.772 0.524 0.796 0.769 0.816 0.591
0.5 0.168 0.115 0.127 0.082 0.200 0.168 0.181 0.127

Size-adjusted 1.0 0.346 0.266 0.261 0.179 0.460 0.429 0.386 0.324
power 1.5 0.502 0.379 0.375 0.290 0.528 0.555 0.439 0.450

2.0 0.524 0.463 0.431 0.389 0.554 0.532 0.495 0.503

S.4.4 Constancy of the correlation matrix

Here, we consider similar DGP settings as Wied (2017). We set p = 3 and 4, which correspond to

q = 3 and 6 respectively. The corresponding critical values for HR (q) are identical to those of the

EKS test statistics, and are 1.4216 and 2.1544 respectively. The sample size is set to be n = 300

and 600. The number of Monte Carlo simulation is set to 1, 000.

DGP1 [Homoskedasticity]. We consider a multivariate Xt = et = (e1t, . . . , ePt)
⊺, which follows

i.i.d. multivariate normal distribution MN(0, 1.5Iq), where Iq is a q × q identity matrix, and the

correlation matrix of et is Iq.

DGP2 [Conditional Heteroskedasticity]. We consider a multivariate Xt = (X1,t, . . . , Xp,t)
⊺,

which follows a GARCH(1,1) process

Xt = Σ
1/2
t et,

σ2i,t = (1− α1 − β1) + α1X
2
i,t−1 + β1σ

2
i,t−1, for i = 1, . . . , p,
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where Σt =

σ21,t 0

0 σ22,t

, (α1, β1) = (0.1, 0.79), and et specified as in DGP1.

DGP3 [Unconditional Heteroskedasticity]. This case is similar to DGP2, except that now

there exists a structural break in volatilities:

Xt = Σ
1/2
t et,

σ2i,t = σ0 (1 + δI (t > n/2)) , σ0 = δ =
√
1.5, for all i,

and the specification of et remains the same as DGP1 and DGP2.

The results for sizes are summarized in Table S.12. Under DGP3, the G test suffers from severe

oversize problem, which is exactly the opposite of the “better size and less power” problem (Shao,

2010; Zhang et al., 2011; Wang and Shao, 2022). See Section 5.3 in the manuscript for further

discussion on the rationale.

Table S.12: Sizes for DGP1, DGP2 and DGP3 for testing the constancy of correlation matrix

DGP1 DGP2 DGP3
n p HR G HR G HR G
250 3 0.082 0.079 0.091 0.092 0.085 0.186
500 3 0.067 0.086 0.073 0.081 0.081 0.205
250 4 0.102 0.085 0.091 0.086 0.109 0.185
500 4 0.071 0.090 0.071 0.096 0.090 0.222

Then we consider the power of the G and EKS test statistics under four types of structural

changes in Rt.

(i) Single break - shift in level of correlation:

Rt = R01I (t ≤ t0) +R02I (t > t0) , (S.18)

where I is the indicator function, and R01 and R02 are correlation matrices with ρ0 = 0 and 0.5 as

in

R0 =



1 ρ0 . . . ρ0

ρ0 1 . . . ρ0
... . . . ...

ρ0 . . . ρ0 1


(S.19)
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respectively, and t0 = n/2.

(ii) Single break - canceling breaks: consider (S.18), where R01 = 0 and R02 = (∆ij) with

alternating ∆ij = 0.2 and −0.2, and t0 = n/2.7

(iii) Double breaks - shift in level of correlation:

Rt = R01I
(
1 ≤ t ≤ n

3

)
+R02I

(
n

3
< t ≤ 2n

3

)
+R03I

(
2n

3
< t ≤ n

)
,

where R01, R02 and R03 are correlation matrices with ρ0 = 0.2, 0.5 and 0.7 as in (S.19).

(iv). Smooth changes in correlation/multiple breaks: Rt =



1 ρt . . . ρt

ρt 1 . . . ρt
...

... . . . ...

ρt . . . ρt 1


and ρt =

z = t/n.

The powers and size-adjusted powers are summarized in Tables S.13 and S.14. In terms of power,

HR (q) is more powerful than Shao and Zhang’s (2010) multivariate G test statistic in most of the

cases, especially for break types (iii) and (iv), which are not nested within the one change-point

alternative of Shao and Zhang’s (2010) G test statistic.

Under break type (ii), the G test and HR (q) have similar powers under DGP1 and DGP2.

Under DGP3, the G test delivers higher powers when p = 3; however the sizes for the G test are

unreliable, see Table S.12. Note that under break type (ii), Choi and Shin’s (2021) Qn test has

no power, as seen from simulation studies in Choi and Shin (2021), which can also be seen from

(S.15), the breaks cancel each other off when summed up.

Given the size distortion for Shao and Zhang’s (2010) G test statistic, we should focus more

on the size-adjusted power instead, the results indicate that HR (q), in general, offers superior

performance for all DGPs and break types, in particular for p = 4 and for more general types of

structural breaks, namely, break types (iii) and (iv). These findings, when combined with findings

from testing structural breaks in the medians (Section S.4.3), suggest that the adjusted-range based

7Specifically, R02 =

 1 0.2 −0.2
0.2 1 −0.2
−0.2 −0.2 1

 when p = 3; R02 is specified in a similar way when p = 4 and 5; viz.

the breaks are canceling each other off if Qn is considered.
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self-normalized EKS test offers reasonable sizes and better powers than Shao and Zhang’s (2010)

self-normalized G test for statistical quantities that vary slowly or that become “almost constants”,

as the estimation horizon increases.

Table S.13: Powers for testing the constancy of the correlation matrix.

n=250 n=500
DGP1 DGP2 DGP3 DGP1 DGP2 DGP3

Break type p HR G HR G HR G HR G HR G HR G
(i) 3 0.990 0.980 0.990 0.942 0.990 0.994 1.000 0.999 1.000 0.998 1.000 1.000

4 0.997 0.990 0.997 0.976 0.998 0.996 1.000 1.000 1.000 1.000 1.000 1.000
(ii) 3 0.410 0.421 0.410 0.403 0.410 0.616 0.689 0.666 0.689 0.665 0.683 0.848

4 0.937 0.809 0.937 0.765 0.961 0.938 1.000 0.975 1.000 0.957 1.000 0.996
(iii) 3 0.876 0.837 0.876 0.812 0.869 0.943 0.993 0.907 0.993 0.901 0.992 0.972

4 0.900 0.863 0.900 0.859 0.899 0.956 0.998 0.950 0.998 0.932 0.995 0.990
(iv) 3 0.732 0.628 0.732 0.608 0.704 0.646 0.951 0.789 0.951 0.780 0.945 0.804

4 0.814 0.661 0.814 0.673 0.805 0.667 0.983 0.859 0.983 0.845 0.977 0.872

Table S.14: Size-adjusted powers for testing the constancy of the correlation matrix.

n=250 n=500
DGP1 DGP2 DGP3 DGP1 DGP2 DGP3

Break type p HR G HR G HR G HR G HR G HR G
(i) 3 0.978 0.975 0.934 0.904 0.965 0.968 1.000 0.992 0.998 0.995 1.000 0.999

4 1.000 0.984 1.000 0.958 1.000 0.986 1.000 0.999 1.000 0.998 1.000 1.000
(ii) 3 0.324 0.366 0.280 0.258 0.300 0.384 0.605 0.566 0.554 0.565 0.562 0.555

4 0.999 0.733 0.993 0.678 0.999 0.766 1.000 0.952 1.000 0.915 1.000 0.963
(iii) 3 0.811 0.796 0.665 0.690 0.778 0.765 0.979 0.848 0.912 0.840 0.973 0.779

4 0.998 0.801 0.990 0.775 0.999 0.810 1.000 0.887 1.000 0.877 1.000 0.884
(iv) 3 0.646 0.578 0.549 0.471 0.570 0.375 0.913 0.700 0.826 0.702 0.887 0.442

4 0.993 0.563 0.982 0.576 0.987 0.380 1.000 0.730 0.999 0.744 1.000 0.540

S.5 Empirical analysis

First, we visualize the continuously compounded rates of return for the DJIA, the FTSE 100, the

CAC 40 and DAX in Figure S.5. Second, we visualize the parameter constancy tests (MR and G)

for the mean equations of the ARMA(1,1)-GARCH(1,1) models for the S&P Composite, FTSE

100, CAC 40 and DAX stock indices in Figure S.6. Finally, we plot the proposed MR(8) test and

Shao and Zhang’s (2010) G test for the constancy of parameters of the bivariate DCC-GARCH(1,1)

models. The pairs we consider are DJIA with DAX, DJIA with CAC 40, DJIA with FTSE 100,

and DJIA with S&P Composite respectively. See Figure S.7. The figures for other pairs are similar,

and are available upon request from the authors.
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Figure S.5: Daily continuously compounded rates of return for the S&P Composite, FTSE 100,
CAC 40, and DAX stock indices.
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Figure S.6: Statistic values for the proposed MR and the G tests for the mean equations of
ARMA(1,1)-GARCH(1,1) models for the S&P Composite, FTSE 100, CAC 40, and DAX stock
indices.
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Figure S.7: Statistic values for the proposed MR(8) and G(8) tests of constancy of parameters
in the bivariate DCC-GARCH(1,1) models for DJIA with DAX, DJIA with CAC 40, DJIA with
FTSE 100, and DJIA with S&P Composite.
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