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Abstract

In this paper, we propose two novel frameworks to incorporate auxiliary information

about connectivity among entities (i.e., network information) into the estimation of large

covariance matrices. The current literature either completely ignores this kind of network

information (e.g., thresholding and shrinkage) or utilizes some simple network structure

under very restrictive settings (e.g., banding). In the era of big data, we can easily get

access to auxiliary information about the complex connectivity structure among entities.

Depending on the features of the auxiliary network information at hand and the structure

of the covariance matrix, we provide two different frameworks correspondingly —the
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Network Guided Thresholding and the Network Guided Banding. We show that both

Network Guided estimators have optimal convergence rates over a larger class of sparse

covariance matrix. Simulation studies demonstrate that they generally outperform other

pure statistical methods, especially when the true covariance matrix is sparse, and the

auxiliary network contains genuine information. Empirically, we apply our method to the

estimation of the covariance matrix with the help of many financial linkage data of asset

returns to attain the global minimum variance (GMV) portfolio.
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1 Introduction

Covariance matrix estimation is an important problem in statistics and econometrics. When

the dimensionality N of the random vector Xt = (X1t, . . . , XNt)
⊺ under inspection is large,

estimating its covariance matrix is challenging. It is well known that the sample covariance

matrix is ill-conditioned when the dimension exceeds the sample size. In that case, some

structures need to be imposed on the covariance matrix, and regularization techniques need to

be applied for consistent estimation.

In the era of big data, we are gaining access to more and more auxiliary information in

addition to the observations of {Xt}Tt=1, which could potentially help us learn about the un-

derlying structure of the covariance matrix (i.e., connectivity among entities). Consider the

case of equity return covariance. Israelsen (2016) finds that stocks covered by similar sets of

analysts co-move a lot. Ge et al. (2022) find that stocks co-mentioned in business news ex-

hibit excess co-movement beyond risk factors. Applying textual analysis to firms’ 10-K reports,

Hoberg and Phillips (2016) define peer groups within which firms are fundamentally similar.

All of these aforementioned auxiliary network information could help us to learn about the

connectivity among the stocks. However, the current literature either completely ignores this

kind of auxiliary information or uses part of it under some very restrictive settings.

In this paper, we incorporate auxiliary information about connectivity among entities (i.e.,

network information) into the estimation of large covariance matrices. Depending on the fea-

tures of the auxiliary network information at hand and the structure of the covariance matrix,

we provide two separate avenues for application and derive their theories accordingly.

The first method we propose is called Network Guided Thresholding. The method is applica-

ble when auxiliary information identifies the location of “significant” elements in the covariance

matrix while staying silent about the relative importance of neighbors for each node. Industry

information is a good example of such auxiliary information as it implies a block-diagonal net-
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work where every node is equal within an industry. The original series of thresholding methods

(Bickel and Levina (2008a), Cai and Liu (2011), Fan et al. (2013)) keep the “significant” el-

ements in sample covariance and shrink the rest based on statistical information only under

the assumption of sparsity (or conditional sparsity). These thresholding estimators require

no knowledge about the location information. We, on the other hand, use auxiliary network

information to identify the location of these “significant” elements. We keep the “significant”

elements in the sample covariance and then apply generalized thresholding to the rest. The

work closest to this method is Fan et al. (2016), where the authors apply location-based thresh-

olding utilizing sector information. However, the factor model residual correlation structure is

not as simple as a block diagonal assumed by Fan et al. (2016), and our method accommo-

dates more complex structures. We derive the theoretical properties of the Network Guided

Thresholding estimator. Compared with Bickel and Levina (2008a), we consider a larger class

of sparse covariance matrices as we distinguish “large” and “small” elements using the auxil-

iary information and we quantify their behaviors separately. We show the consistency of the

estimator in the operator norm as (logN)/T → 0 uniformly over the class of matrices that

satisfy our sparsity condition. Next, we show that the Network Guided Thresholding estimator

achieves optimal rate as in Bickel and Levina (2008a) over a larger parameter space.

The second method we propose is called Network Guided Banding. Bickel and Levina

(2008b) show that uniformly over the class of the “approximately bandable” matrices, the

banding estimator shows a superior convergence rate. However, according to their definition, the

elements become smaller in magnitude as one moves away from the diagonal. This definition is

appropriate for applications with natural orderings of variables, such as time series, climatology,

and spectroscopy. Unfortunately, in most cases, such orderings do not exist, which means that

the banding estimator cannot be applied. In this paper, we propose a theoretical framework that

expands the class of “bandable” matrices, making this method applicable to a broader range
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of scenarios. One of the key features of this new method is that it is permutation-invariant,

while the original banding estimator performs poorly on a permutated ordering. Unlike the

first method, we require auxiliary information to reveal the relative importance of neighbors

for each node to make this method applicable. For example, analyst co-coverage (Israelsen

(2016)), news co-mentioning (Ge et al. (2022)), and text-based product similarity (Hoberg

and Phillips (2016)) all provide degrees of similarities among entities, according to which we

could rank the relative importance of neighbors for each node. Taking news co-mentioning

for illustration, firms co-mentioned by the same piece of news are treated as linked, and the

frequency of co-mentioning could be used to measure the strength of linkages and thus rank

their relative importance. We derive the theoretical properties of the Network Guided Banding

estimator. We show the consistency of the estimator in the operator norm as (logN)/T → 0,

uniformly over the class of matrices that satisfy our sparsity and “bandable” condition. We

also show that the Network Guided Banding estimator achieves optimal rate as in Bickel and

Levina (2008b) over a larger parameter space.

Practically, we apply proposed estimators to construct and test Global Minimum Variance

(GMV) portfolios by estimating the covariance matrix of the idiosyncratic shocks by incorpo-

rating the auxiliary information.

We assume that asset returns obey a Fama-French factor framework. In Monte Carlo

experiments, we compare our estimation accuracy with other benchmark competitors, including

conventional thresholding, linear and nonlinear shrinkage approaches. The asset returns follow

a factor model where the true covariance matrix of asset-specific shocks is sparse. For the

Network Guided Thresholding approach, we introduce auxiliary information of varying quality,

simulating both type I (false positives) and type II (false negatives) errors. The findings reveal

superior finite sample performance over all compared statistical methods, provided the auxiliary

network information is of reasonable quality, with minimal type I and II errors. As for the
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Network Guided Banding, the generated neighborhood information can reveal the true network

structure with different probabilities. When the probability of accurately revealing the network

structure is not negligible, the performance of our estimator surpasses that of all benchmark

models. Finally, the relative performance of the two proposed estimators depends on the genuine

structure of the underlying covariance matrix and the quality of the auxiliary information.

Our empirical analysis utilizes real-world data from the Chinese stock market, adopting

the Chinese factor model as outlined in Liu et al. (2019) to analyze asset returns. We explore

various sources of auxiliary information that reveal linkages among listed stocks. A primary

focus is the news co-mention network, as elaborated in Ge et al. (2023), which delineates two

specific types of linkages: co-mentions within the same passage and within the same sentence.

This categorization not only enriches the connectivity data but also serves as a critical input for

both our Network Guided Thresholding and Banding estimators, given its ability to quantify

the frequency of co-mentions. Furthermore, we explore the analyst co-coverage in China, which

plays a pivotal role in understanding the interconnectedness of stocks within this unique mar-

ket. This auxiliary information quantifies the strength of connectivity through a continuous

measure, making it highly applicable to our proposed estimators. Additionally, we incorporate

the traditional industry classification as an indicator of connectivity, particularly aligning with

the Network Guided Thresholding approach. This established method of identifying linkages

serves as a comparative basis for the newer forms of auxiliary information. To assess the prac-

tical value of incorporating this auxiliary information, we construct Global Minimum Variance

(GMV) portfolios both with and without these additional data sources. These portfolios are

then tested for their out-of-sample performance, using conventional statistical methods that

lack auxiliary connection information as benchmark models. Our comparison spans different

sets of constituent stocks, ranging from 300 to 800. Our findings consistently indicate that the

integration of auxiliary information significantly enhances the out-of-sample performance of
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GMV portfolios. This improvement underscores the practical benefits of incorporating network

linkages and connectivity evidence, derived from both novel and traditional sources, in portfolio

construction.

Literature Review: A growing number of works have been proposed in the literature

to study the covariance matrix estimation when the dimensionality is large. Bickel and Lev-

ina (2008a) develop the theory for universal thresholding, which assumes the diagonal of the

covariance matrix is uniformly bounded. Cai and Liu (2011) relax the uniform boundedness

assumption and proposes an adaptive thresholding estimator where there are entry-adaptive

thresholds. Fan et al. (2013) argue that common factors should be extracted first before ap-

plying thresholding when there are ”extremely spiked” eigenvalues in the covariance and such

a covariance matrix is conditionally sparse. Another strand of literature has tried to correct

the spectrum of the sample covariance matrix instead of imposing sparsity on the elements of

the matrix. For instance, Ledoit and Wolf (2004) and Ledoit et al. (2012) have proposed linear

and nonlinear shrinkage estimators that apply shrinkage to the eigenvalues of the sample co-

variance matrix. The linear shrinkage does this by finding the linear combination of the sample

covariance and a well-conditioned matrix, such as the identity matrix. The nonlinear shrinkage

estimator corrects the eigenvalues using the asymptotic Marchenko–Pastur distribution. One of

the advantages of shrinkage estimators is that they are well-conditioned, while the estimators

based on sparsity often require choosing tuning parameters to guarantee positive definiteness.

However, shrinkage estimators may be undesirable when the true covariance matrix is sparse.

These aforementioned methods completely ignore the location information implied by auxil-

iary information that might be out there and rely on observations of {Xt}Tt=1 only. There is

also literature that embraces the usage of very simple location information. Bickel and Lev-

ina (2008b) proposes the banding and tapering estimators, where indexes have orderings and

elements in the covariance matrix become smaller in magnitude as one moves away from the
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diagonal. They show that the banding estimator has a superior convergence rate by utilizing

the location information. However, the underlying structure of these ”bandable” matrices is

very restrictive, which leaves the banding estimator inapplicable in most scenarios.

The novelty of this paper is that we augment the estimation of large covariance matrices

with auxiliary network information. Depending on the features of the auxiliary network in-

formation at hand, we provide two separate avenues for application. We derive their theories

accordingly, and we show that both Network Guided estimators have good theoretical and

numerical properties.

Although in this paper, we are applying augmenting network information to the estima-

tion of large static covariance matrices, a similar idea can be extended to the estimation of

large dynamic covariance matrices. For example, dynamic network information could be well

incorporated into the conditioning information set in Chen et al. (2019).

The remainder of this paper is structured as follows. Section 2 introduces the concepts

behind the Network Guided Thresholding estimator and the Network Guided Banding esti-

mator, and provide a comparison against conventional thresholding and banding approaches.

In Section 3, we lay down the foundational assumptions and deduce the convergence theorems

within the factor model; moreover, this section encompasses a discussion on the adjustments

for ensuring positive definiteness. Section 4 is dedicated to presenting our simulation results,

comparing the performance of our proposed estimators with other established baseline method-

ologies. In Section 5, we empirically apply these methodologies to predict the covariance

matrix for stock returns in the China market, and evaluate the out-of-sample volatility of the

Global Minimum Variance (GMV) portfolio as produced by our estimators as well as other

benchmarks. Finally, Section 6 provides a summary of our findings and briefly deliberates on

avenues for future research.
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Notation: For vector a ∈ Rd, ∥a∥ stands for Euclidean norm, i.e., ∥a∥ = (a21 + · · · , a2d)
1/2. For

matrix A = (a1, · · · ,am) ∈ Rm×d, ∥A∥F represents the matrix Frobenius norm, i.e., ∥A∥F =

(∥a1∥2 + · · ·+ ∥am∥2)1/2; ∥A∥2 stands for the matrix 2-norm, which is defined as ∥A∥2 =√
ρmax (A⊤A), where ρmax (·) returns the maximum eigenvalue of a matrix; the operator norm

∥A∥ = inf
{
c > 0 : ∥Ax∥ ≤ c ∥x∥ , for all x ∈ Rd

}
is typically used in the theoretical proof.

For two real-valued sequences {aT} and {bT}, aT = o (bT ) means aT/bT → 0 when T → ∞;

aT = O (bT ) means there exists some constant A, s.t. aT ≤ AbT for all T . We use JN×N to

represent N ×N unit matrix.

2 Model Setup

Suppose we have observations Xt = (X1t, . . . , XNt)
⊺1, t = 1, . . . , T of a N -dimensional random

vector X with mean E(X) = µ and variance E((X−µ)(X−µ)⊺) = Σ. The sample covariance

estimator is given as follows:

Σ̂ =
1

T

T∑
t=1

(Xt − X̄)(Xt − X̄)⊺ = [σ̂ij]N×N , (1)

where X̄ = 1
T

∑T
t=1 Xt. As mentioned in the introduction section, the sample covariance matrix

behaves poorly when N is large. Below we propose two theoretical frameworks for augmenting

large covariance matrix estimation with auxiliary network information. One may choose the

suitable framework depending on the features of the auxiliary network information at hand.

2.1 Network Guided Thresholding

When our auxiliary information identifies the location of “significant” elements in the covariance

matrix while staying silent about the relative importance of neighbors for each node, we go for

the Network Guided Thresholding method. Recall that in the original thresholding paper
1The samples can either be independent or strong α-mixing in our assumptions.
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(Bickel and Levina (2008a)), their uniformity class of covariance matrices is given by

Uτ (q, c0,M) =

{
Σ : σii ≤M,

N∑
j=1

|σij|q ≤ c0(N), for all i
}
. (2)

Here, q plays an important role. Suppose that q = 0, then the number of non-zero elements

needs to be bounded. On the other hand, when q → 1, the large elements of Σ will dominate,

and thus the sum of large elements should be bounded.

In this paper, we consider an extension to their uniformity class. We first define the Location

Indicator Matrix

L = [Lij]N×N , Lij = I{|rij |>l} =


1, |rij| > l,

0, |rij| ≤ l,

(3)

note this L matrix is defined over the correlation coefficients matrix R = [rij]N×N , and for

s ∈ {0, 1}, we define Ls
ij = I{Lij=s}. Thus, L1 indicates the location of large elements in the

correlation matrix, and L0 indicates the location of small elements (not necessarily zero) in the

correlation matrix. It is obvious that L1 = L and L0 = IN,N −L1, where IN,N is a unit matrix.

We use auxiliary information to estimate L and therefore, Ls for s ∈ {0, 1}. We then consider

the following uniformity class:

U1(q, c0, c1,M,L) =

Σ = DRD : σii ≤ M,
∑
j

L1
ij ≤ c1 (N) ,

∑
j

L0
ij |rij |

q ≤ c0 (N) , for all i

 , (4)

where D = diag{√σ11, · · · ,
√
σNN}, and we separately state the conditions for large elements

((i, j) pairs such that L1
ij = 1) and small elements ((i, j) pairs such that L0

ij = 1). Essentially,

this uniformity class controls the number of large elements and the growth rate of the remaining

small elements. Compared to the uniformity class of covariance matrices considered in Bickel

and Levina (2008a), we extend the class of covariance matrices that satisfy the thresholding

condition. Consider a covariance matrix Σ that contains a small number of relatively large

elements and a large number of small elements. Such a covariance matrix does not satisfy the

sparsity assumption from Bickel and Levina (2008a) while it still satisfies our sparsity condition.

Thus our method can deal with more scenarios.
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Of course, a priori we do not know the location of the large elements. Suppose that we have

observations from the auxiliary dataset that allow us to form an estimator L̂ for L, independent

of the sample X. With the help of L̂, we define the Network Guided Thresholding Estimator

to be

TL,λ

(
R̂
)
=
[
sL,λ

(
σ̂ij/

√
σ̂iiσ̂jj

)]
N×N

with sL,λ (rij) = rijI{Lij=1} + sλ (rij) I{Lij=0}, (5)

where sλ(x) is the generalized thresholding operator2. Thus for covariance matrix, we naturally

define Σ̂T
L̂

:= D̂TL,λ

(
R̂
)
D̂. Then the feasible Network Guided Thresholding Estimator is

Σ̂T
L̂
:= D̂TL̂,λ

(
R̂
)
D̂, where we use the estimated Location Indication Matrix L̂.

2.2 Network Guided Banding

When the auxiliary information reveals the relative importance of neighbors for each node, we

prefer the Network Guided Banding method. Recall that the original Banding and Tapering

methods work when there is a natural ”order” or ”distance” among variables; they consider the

following uniformity class of covariance matrices:

Ub(ε, α, c) =

Σ : max
j

∑
i:|i−j|>k

|σij | ≤ ck−α for all k, and 0 < ε ≤ ρmin (Σ) ≤ ρmax (Σ) ≤ 1

ε

 , (6)

where ρmin (·) and ρmax (·) give the minimal and maximal eigenvalues of a matrix. Bickel and

Levina (2008b) shows that when this banding condition is satisfied, a better convergence rate

can be achieved by taking advantage of the underlying structure.

However, the original Banding and Tapering methods are only applicable to time series

essentially, as variables are not ordered in most cases. We extend their method by allowing

a more general underlying connectivity (network) structure, making these methods applicable

to a wider range of covariance matrices. We first define a new order ⟨{1, · · · , N} ,≻⟩ for a

N -dimensional vector a = (a1, . . . , aN)
⊺ with distinct elements as follows:

i ≻ j ⇔ ai > aj.

2Commonly used thresholding operators such as hard thresholding, soft thresholding, and SCAD can be

applied.
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Given a vector of relative importance a = (a1, . . . , aN)
⊺, we can use this order operator to sort

the elements from the vector. Then we use a descending (in terms of ≻) tuple (p1, . . . , pN) to

record the sorted result, where p1 ≻ p2 ≻ · · · ≻ pN . Notice that (p1, . . . , pN) is a permutation

of (1, . . . , N), where p1 gives the index of the largest element (the most important) and pN

gives the index of the smallest element (the least important). For any positive integer k,

define Sa
k = {p1, ..., pk} as the set of indexes of the k-biggest elements under ≻ for vector

a. For example, if a = (1, 4, 3, 2), then the sorted tuple is (2, 3, 4, 1), Sa
2 = {2, 3}. Next,

we generalize the uniformity class considered in Bickel and Levina (2008b) (Equation 6) by

directly comparing the relative magnitudes (not a real ”distance”) of entries for each row of a

matrix. We modify the correlation counterpart of Equation 6 instead of itself for fair comparison

under heteroskedasticity. To be precise, we consider a generalized uniformity class of covariance

matrices:

U2(ε, α, b0,M) =

Σ = DRD : max
i

σii < M,
∑

j /∈S
abs(ri)

k

|rij | < b0 (N) k−α for all i, k, and ρmax (R) ≤ 1

ε

, (7)

where ri is the i-th column (row) of R, and abs (ri) = (|ri1| , · · · , |riN |) gives the absolute

values of the correlation coefficients. Sabs(ri)
k gives the set of indexes of the k-biggest elements.

Notice that when k = 1, Sabs(ri)
k as the self-correlation is always the largest. When k > 1,

S
abs(ri)
k includes i itself and the set of k − 1 nearest neighbours. Essentially, the correlations

between non-neighboring pairs need to be small under Equation 7. Compared with the original

banding, this method is permutation-invariant and accommodates a more general connectivity

(network) structure.

We use auxiliary information to infer the underlying connectivity structure of the target

correlation matrix. Define a relative importance indicator matrix C = [Cij]N×N with non-

negative elements. For each row i (or column), the elements of Ci = (Ci1, . . . , CiN) give the

relative importance scores and retain the order of importance from abs(ri) (i.e., for each i, there

exists a non-decreasing function fi such that Cij = fi(|rij|) for all j). Then we can reconstruct
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the correlation structure with a Network Guided Banding Estimator as follows

Σ̂B
C = D̂BC,k

(
R̂
)
D̂ with BC,k

(
R̂
)
= [bC,k (r̂ij)]N×N ,

bC,k (rij) = rijI{i∈Scj
k ,j∈Sci

k } =


rij, i ∈ S

cj
k and j ∈ Sci

k ,

0, otherwise,

(8)

We do not observe the relative importance indicator matrix C, and we use the auxiliary dataset

to form an estimator Ĉ, and the feasible estimator is Σ̂B
Ĉ

.

It’s noteworthy that Σ̂B
Ĉ

is not strictly a banding or tapering estimator because the k-

neighbour relationship is asymmetric, i.e., i ∈ S
cj
k ̸⇔ j ∈ Sci

k for certain symmetric matrix C.

For example, in a scale-free network, the central node is the neighbor of many nodes connected

to it, but the reverse is not true.

3 Main Results

3.1 Factor Structure and Global Minimum Variance (GMV) Port-

folio

Consider the following classical factor model

yt = β0 + β1f1,t + β2f2,t + · · ·+ βKfK,t + ut

= β0 +Bft + ut,

(9)

t = 1, 2, · · · , T , where yt is the N × 1 assets return at time t, ft is the K × 1 observable factors

return, B = (β1,β2, · · · ,βK) is theN×K factor loading matrix, the mispricing term β0 is taken

out of B since it has different economic meaning, and ut is the zero-mean residual term, which

may contain cross-section dependency but is uncorrelated with ft. Our goal is to construct

a Global Minimum Variance (GMV) portfolio by taking account of the covariance matrix of

ut, denoted by Σ = E (utu
⊺
t ) = (σij)N×N , with the help of auxiliary network information,

especially in the case T < N .
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It is notoriously hard to estimate both the first and second moments of asset returns through

past observations, and this motivates us to take the GMV portfolio as a playground to test

our methodology. Compared with the mean-variance optimal portfolio as in Markowitz et al.

(1952), GMV portfolio avoids the estimation error of the expectation of assets returns, which

can mostly reflect the performance of covariance matrix estimators.

Under mild assumptions, the portfolio weights for each asset to construct a GMV portfolio

are:

ωGMV =
Σ−1

y 1

1⊺Σ−1
y 1

,

where ω is N × 1 vector of portfolio weights, with 1 a conforming vector of ones and Σ

the covariance matrix of assets returns yt. Given the factor structure of assets returns in

Equation 9, we have E(yty
⊺
t ) = Σy = BΣfB

⊺+Σu. Next, we discuss how to estimate ω under

our framework.

The ordinary least square method gives estimators of β0 and B, thus we can collect residuals

as ût = yt − β̂0 − B̂ft. The conventional estimator of Σu is Σ̂u = 1
T

∑T
t=1 ûtû

⊺
t = (σ̂ij)N×N .

After applying our thresholding or banding technique with auxiliary information to Σ̂u, we

attain Σ̂T
u,L̂

and Σ̂uB
u,Ĉ

separately. Finally,

ω̂ =
Σ̂−1

y 1

1⊺Σ̂−1
y 1

,

with Σ̂y = B̂Σ̂fB̂
⊺ + Σ̂T

u,L̂
or Σ̂B

u,Ĉ
.

Next, we discuss the assumptions and the corresponding theoretical properties of Σ̂T
u,L̂

and

Σ̂B
u,Ĉ

. In our analysis, both N and T can go to infinity, and N can be larger than T , but we

restrict logN
T

→ 0. Proofs of all theorems are deferred to the appendix. For simplicity, we

may abuse the notation A in the future to represent any large enough constant which does not

depend on N and T .

Assumption 1. (a) Sequence {ut} is strong α-mixing stationary and ergodic, with zero means

and covariance matrix Σ, the mixing coefficients
{
αmixing
t , t ≥ 0

}
satisfy αmixing

t ≤ exp
(
−ϕ1t

ϕ2
)
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for some positive constants ϕ1 and ϕ2 not depending on N (thus uniformly mixing over

N), and there are some constants c, c, s.t., 0 < c < inf
i,j
V ar(uitujt) < sup

i,j
V ar(uitujt) < c,

c < ρmin (Σ) < ρmax (Σ) < c.

(b) The tail of the distribution of uit is uniformly bounded by an exponential-type tail, i.e., for

some constant ϕ3, ϕ4 > 0 not depending on N , and any x > 0, we have supi P (|uit| > x) ≤

exp
{
−ϕ3x

ϕ4
}

.

(c) For some positive sequences κ1 (N, T ) = o (1) and aT = o(1), and a constant A

which does not depend on N and T , P
(
maxi

1
T

∑T
t=1 |uit − ûit|2 > Aa2T

)
≤ O (κ1(N, T )) and

P (maxi,t |uit − ûit| > A) = o (1).

(d) For some γ < 1, (logN)6/γ−1 = o(T ).

Remark: Condition (a) is common in the econometric research. The first part suggests a weak

dependency for the sequence while the second part requires Σ invertible. The tail condition

(b) allows large deviation theory to be applied. Condition (c) is important to allow us to apply

estimation constructed by ût when the true values are not observable. In addition, conditions

(a), (b) and (c) match the Assumptions 2.1, 2.2 in Fan et al. (2011). Condition (d) is an

additional assumption to assure good asymptotic properties, which is proposed in Theorem 2.1

of Fan et al. (2011).

For example, with these assumptions, one can easily show

P

(
max
i,j

|σ̂ij − σij| > A

√
logN

T

)
= O

(
1

N2

)
for some large A which does not depend on N and T . The proof can be found in Lemma A.3

of Fan et al. (2011).

Remark: In this paper, we suppose the observed price or observed return is equal to the

efficient price or efficient return. However, when the observed price Pt is the sum of efficient

price P ∗
t and microstructure noise et, i.e., Pt = P ∗

t + et, as highlighted by Li and Linton (2022),

the microstructure noise component is not directly observed because it is obscured by the
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efficient price. In that case, the covariance matrix of the efficient price series is equal to the

long run covariance matrix of the observed returns.

3.2 Consistency of Thresholding Estimator

The thresholding estimator in our paper is mainly set for the correlation coefficients matrix,

i.e., the indicator matrix L = (Lij)N×N with Lij = I{|rij |>l} for some given l (may change with

(N, T )), and Σ = DRD where D = diag
{√

σ11, · · · ,
√
σNN

}
. We assume that Σ lies in the

class U1(q, c0, c1,M, L) introduced in Equation 4, and the thresholding estimator is given by

Σ̂T
L̂
= D̂TL̂,λ

(
R̂
)
D̂. We emphasize that in Fan et al. (2011), conditions and assumptions are

mainly designed for those large elements since the rest elements in their paper are directly

zeros. In our paper, additional assumptions on the small elements and network information

need to be imposed to derive the convergence theory.

Assumption 2. (a) P

(
max
1≤i≤N

∑N
j=1 I{Lij=1,L̂ij=0} > aT c1 (N)

)
≤ O (κ2 (N)), for some

κ2 (N, T ) = o(1), c1 (N) → ∞;

(b) The function sλ satisfies |sλ (t)− t| ≤ t and |sλ (t)| ≤ λ for |t| ≤ λ;

(c) We assume

P

(
max
1≤i≤N

N∑
j=1

∣∣∣∣∣L0
ij

T

T∑
t=1

uitujt

∣∣∣∣∣ > max
1≤i≤N

N∑
j=1

L0
ij |σij|+ aT

)
≤ O (κ3 (N, T ))

for some κ3 (N, T ) = o(1);

(d)P
(
max1≤i≤N

∑N
j=1

∣∣∣L0
ij

T

∑T
t=1 (ûitûjt − uitujt)

∣∣∣ > aT

)
≤ O (κ3 (N, T )).

Remark: Condition (a) restricts the number of mis-classified large elements. Condition (b)

is the condition (iii) in Rothman et al. (2009), which is a basic requirement in thresholding

estimation. Condition (c) sets an upper bound for the speed of small elements’ growth. Con-

dition (d) argues the total error of the small elements between using ut and ût cannot be too

large. Note that condition (c) and (d) together allow estimation error on small elements, with

comparison to those on large elements in condition (a).
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For the asymptotic properties of Network Guided Thresholding estimator, we have the

following result.

Theorem 1. Suppose that Assumption 1 and Assumption 2 hold, and l ≤ λ for all (N, T ). For

some large A which does not depend on (N, T ), we have:

P

(∥∥∥Σ̂T
L̂
−Σ

∥∥∥ > A

(
c1 (N)

√
logN

T
+ c0 (N)λ1−q + aT

))
= O

(
1

N2
+ κ1 (N,T ) + κ2 (N,T ) + κ3 (N,T )

)
,

where ∥·∥ represents the operator norm, and the rate of convergence κ1 is given in Assumption

1 to describe the relationship of uit and ûit, while κ2 and κ3 are the convergence rates of L̂,

introduced in Assumption 2.

Remark: The error term caused by large elements estimation is c1 (N)
√

logN
T

, the effect of

small elements appears in c0 (N)λ1−q and the error aT is caused by using L̂ rather than true

L. When c0 (N) and c1 (N) are both O(1), the best choice of λ is λN ≍
(
logN
T

)1/2(1−q), which

then gives ∥∥∥Σ̂T
L̂
−Σ

∥∥∥ = OP

(√
logN

T
+ aT

)
= oP (1) .

If we assume c0(N)
c1(N)

= O
((

logN
T

)q/2), an optimal choice of thresholding parameter (also suggested

in Rothman et al. (2009)) is λN ≍
√

logN
T

, which yields

∥∥∥Σ̂T
L̂
−Σ

∥∥∥ = O

(
c0 (N)

(
logN

T

) 1−q
2

+ aT

)
,

and provided c0 (N)
(
logN
T

) 1−q
2 = o (1), one obtains

∥∥∥Σ̂T
L̂
−Σ

∥∥∥ = oP (1).

3.3 Consistency of Banding Estimator

Recall our banding method on correlation coefficients matrix class as defined in Equation 7,

and a network matrix C gives Sci
k = S

abs(ri)
k for all i, we easily get Σ̂B

Ĉ
= D̂BĈ,k

(
R̂
)
D̂ via an

estimated network information Ĉ. The following assumptions on C guarantee the consistency

of our estimator.
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Assumption 3. (a) For R and C, there exists b1, s.t.
∑N

j=1 |rij| I{i/∈Scj
k ,j∈Sci

k } < b1 (N), for all

i, k;

(b) Suppose Ĉ is the estimator for C, and there exists a sequence κ4 (N, T ) → 0 when T → ∞,

for some A which does not depend on (N, T ),

P

1

k

N∑
j=1

I{
j∈S

ci
k ,j /∈S

ĉi
k

} > A

√
logN

T

 = O (κ4 (N,T )) , P

1

k

N∑
j=1

I{
i∈S

cj
k ,i/∈S

ĉj
k

} > A

√
logN

T

 = O (κ4 (N,T )) .

Remark: Since C is not symmetric, i ∈ S
cj
k may not be equivalent to j ∈ Sci

k . The condition

(a) requires the ”asymmetry quantity” to be bounded by b1 (N), alternatively speaking, most

of the asymmetric parts of C correspond to the small elements. The condition (b) assumes the

number of wrong estimates for large elements is bounded by O
(
k
√

logN
T

)
.

For Network Guided Banding estimator, we have the following asymptotic theorem.

Theorem 2. Suppose that Assumption 1, Assumption 3 hold and k = kN → ∞. Then,

P

(∥∥∥Σ̂B
Ĉ
−Σ

∥∥∥ > A

(
k

√
logN

T
+ b0 (N) k−α + b1 (N)

))
= O

(
1

N2
+ κ1 (N, T ) + κ4 (N, T )

)
,

for some constant A which does not depend on (N, T ), where κ1 is the rate introduced in

Assumption 1, and κ4 is the convergence rate of Ĉ in Assumption 3.

Remark: In the error term, the first two parts k
√

logN
T

+ b0 (N) k−α are the same as Bickel

and Levina (2008a), while b1 (N) is ”asymmetry quantity” introduced in Assumption 3. Addi-

tionally, the error caused by using Ĉ to replace C is bounded by O

(√
logN
T

)
(details can be

found in the proof of Theorem 2), thus absorbed into the first part in the result. Bickel and

Levina (2008a) suggests an optimal choice of k, which is kN ≍
(
logN
T

)−1/2(α+1), then we get

∥∥∥Σ̂B
Ĉ
−Σ

∥∥∥ = OP

(
(1 + b0 (N))

(
logN

T

) α
2(α+1)

+ b1 (N)

)
. (10)

If matrix C is symmetric, then our bound in Equation (10) turns to

OP

(
(1 + b0 (N))

(
logN
T

) α
2(α+1)

)
, which matches the bound in Bickel and Levina (2008a).

Therefore, provided b0 (N)
(
logN
T

) α
2(α+1) = o (1) and b1 (N) = o (1), one easily obtains∥∥∥Σ̂B

Ĉ
−Σ

∥∥∥ = oP (1).
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3.4 Positive Definiteness of Σ̂y

To ensure the positive definiteness of Σ̂y, we borrow the modification method of Chen et al.

(2019). Namely, for a certain estimator Σ̂ of a N × N positive definite population covariance

matrix Σ, let ρ̂1 ≥ ρ̂2 ≥ · · · ≥ ρ̂N be the eigenvalues of estimator Σ̂. In the case ρ̂N ≤ 0,

the estimator Σ̂ is not positive definite, one can follow Chen and Leng (2016) to modify it by

constructing

Σ̂M0 = Σ̂+ (mT − ρ̂N) · JN×N , (11)

where JN×N is the N × N identity matrix and mT > 0 is a tuning parameter. Clearly, Equa-

tion 11 assures the smallest eigenvalues be positive thus Σ̂M0 becomes invertible. Chen et al.

(2019) augment Equation 11 by defining

Σ̂M = Σ̂ · 1{ρ̂N>0} + Σ̂M0 · 1{ρ̂N≤0} = Σ̂+ (mT − ρ̂N) · JN×N · 1{ρ̂N≤0}, (12)

which indicates we still keep Σ̂ when it is already positive definite while choose to use Σ̂M0

when non-positive eigenvalues appear.

Now, we apply the Sherman-Morrison-Woodbury formula to Σ̂y and get

Σ̂−1
y = Σ̂−1

u − Σ̂−1
u B̂

(
Σ̂−1

f + B̂⊺Σ̂−1
u B̂

)
B̂⊺Σ̂−1

u ,

where Σ̂f is naturally to be invertible in a (finite) factor structure while Σ̂−1
u may not be

well-possessed. We modify Σ̂u by Equation 12, however, since

∥∥∥Σ̂uM −Σu

∥∥∥ ≤
∥∥∥Σ̂u −Σu

∥∥∥+ (mT − ρ̂N) ≤ OP

(∥∥∥Σ̂u −Σu

∥∥∥)+mT + |ρ̂N | .

When ρ̂N ≤ 0, Weyl’s inequality gives

|ρ̂N | ≤ |ρ̂N − ρmin (Σu)| ≤
∥∥∥Σ̂u −Σu

∥∥∥ ,
then we suddenly have

∥∥∥Σ̂uM −Σu

∥∥∥ ≤ OP

(∥∥∥Σ̂u −Σu

∥∥∥)+mT , so the tuning parameter should

be set to go to 0 faster than the rate of convergence of Σ̂u, thus the modified version Σ̂uM
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converges to Σu with the same rate as Σ̂u. Specifically, mT should go to 0 faster than

∥∥∥Σ̂u −Σu

∥∥∥ =


OP

(
c1 (N)

(
logN
T

) 1
2 + c0 (N)λ1−q + aT

)
, for thresholding,

OP

(
k
√

logN
T

+ b0 (N) k−α + b1 (N)

)
, for banding.

4 Simulation

4.1 True Covariance Matrix

Similar to Cai and Liu (2011), we consider two types of sparse covariance matrices in the

simulations to investigate the numerical properties of our proposed estimators.

• Model 1 (banded matrix with ordering): Σ = diag{A1, A2}, where A1 = (aij)N
2
×N

2
,

aij =
(
1− |i−j|

10

)+
, A2 = 4JN

2
×N

2
. Here Σ is a two-block diagonal matrix, A1 is a bandable

sparse covariance matrix, and A2 is the identity matrix multiplied by 4.

• Model 2 (sparse matrix without ordering): Σ = diag{A1, A2}, where A2 = 4JN
2
×N

2
,

A1 = B + ϵJN
2
×N

2
, B = (bij)N

2
×N

2
, whose elements independently follow:

bij =



Ber
(
20
N

)
, for i < j,

1, for i = j,

bji, for i > j.

(13)

Ber (x) is a Bernoulli random variable that takes value 1 with probability x and value 0

with probability 1 − x, and ϵ = max{−ρmin(B), 0} + 0.01 to ensure that A1 is positive

definite.

4.2 Auxiliary Information

In the simulation, we directly generate the estimates of the Location Indicator Matrix L and

the Relative Importance Indicator Matrix C, i.e., L̂ and Ĉ. The qualities of these estimates
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(a) Model 1 (b) Model 2

Figure 1: Typical heatmaps of two banded and sparse models

are tuned by some hyper-parameters:

• Observation Level l: We set l = 0.2 which means Lij = 1 if and only if |rij| > 0.2. Designed

for the Network Guided Thresholding Estimator.

• Type I error ζ: Conditional on Lij = 0, the probability of observing L̂ij = 1. Designed for

the Network Guided Thresholding Estimator.

• Type II error 1− p: Conditional on Lij = 1, the probability of actually observing L̂ij = 1.

Designed for the Network Guided Thresholding Estimator.

• Accuracy Rate η: The probability of observing j ∈ S ĉi
k conditional on j ∈ Sci

k . Designed

for Network Guided Banding Estimator.

Table 1 lists the descriptions of these hyper-parameters and the ranges of values they take

for the numerical experiment.

4.3 Numerical Results

The data is generated from a factor model and we focus on the covariance matrix of the residual.

We draw i.i.d. samples ut from N (0, σ2
uΣ), where σ2

u is adjusted to match the daily variance
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Table 1: Hyper-parameters Setup

Hyper-parameters
Auxiliary Information Quality

Very Bad Bad Good Perfect

(p, ζ) (0.3, 0.1) (0.6, 0.1) (0.9, 0.1) (1.0, 0.0)

η 0.3 0.6 0.9 1.0

of the error term from the factor model of Liu et al. (2019). We use the CH-4 factor model3

proposed by Liu et al. (2019), which consists of four factors: Market, Value-Minus-Growth,

Small-Minus-Big and Pessimistic-Minus-Optimistic:

yt = β0 + β1fMKT,t + β2fVMG,t + β3fSMB,t + β4fPMO,t + ut. (14)

Regression results by using the weekly return of HS300 stocks from 2000 to 2021 show that

the average level of σu is 4.85%, which can be adapted in our model. Besides, for generating

purpose, we may need the true coefficients. One can simply run regression model for each

HS300 component stock using 2000 - 2021 weekly data, then calculate the mean and standard

deviation of the estimated coefficients. Based on the estimated coefficients, we dependently

draw β1i ∼ N (0.7013, 0.19612), β2i ∼ N (−0.1582, 0.20552), β3i ∼ N (−0.1200, 0.21822) and

β4i ∼ N (−0.0050, 0.22452), where the means and standard deviations are obtained in the last

step. In addition, the true value of β0 is set to be 0.

For each model described in Subsection 4.1, a T -length sample of i.i.d. N -variate random

vectors {ut} is generated from the normal distribution with mean 0 and covariance matrix

σ2
uΣ, for N = 100, 300, 500. Then return vectors yt are also obtained by Equation 14, where

the weekly CH-4 returns are sampled from a normal distribution, whose mean and covariance

matrix are set to be the same as the historical data from 2000 to 2021, shown in Table 2.
3The CH-4 factor model is found to suit China stock market well and outperform Fama-French 5 factor

model.
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Table 2: Descriptive Statistics of Factor Data

Descriptive Statistics Correlation

Count Mean Std. Skew. Kurt. MKT VMG SMB PMO

MKT 1119 0.1474% 3.3799% -0.1019 2.5177 1.000 -0.237 0.159 -0.283

VMG 1119 0.2774% 1.7354% 1.0481 6.9085 -0.237 1.000 -0.637 0.215

SMB 1119 0.1189% 2.0311% -0.5200 5.0999 0.159 -0.637 1.000 -0.137

PMO 1119 0.1887% 1.5882% 0.5986 8.1812 -0.283 0.215 -0.137 1.000

We gather estimates ût and employ various methods to estimate σ2
uΣ̂. Each scenario,

specified by either (N, T, p, ζ) or (N, T, η), is repeated 100 times to ensure robustness and

consistency in our analysis. Our examination centers on the numerical efficacy4 of both the

Network Guided Thresholding Estimator and the Network Guided Banding Estimator, com-

pared with a collection of purely statistical approaches: the Sample Covariance Estimator,

Soft Thresholding Estimator, Hard Thresholding Estimator, Linear Shrinkage Estimator, and

Nonlinear Shrinkage Estimator. The findings, delineated under both the Frobenius norm and

the Matrix 2-norm, are catalogued in Table 3, illustrating the comparative performances of the

diverse estimation techniques.

Panel A in Table 3 showcases the outcomes for our Model 1, where the true covariance

matrix is banded with order. Here, we observe that both Network Guided estimators sur-

pass their counterparts, provided the auxiliary network information is of reasonable quality.

For the Network Guided Thresholding Estimator, barring the scenario where N < T with

(p, ζ) = (0.3, 0.1) indicating poor auxiliary information, it outperforms the sample covariance

estimator, soft thresholding, hard thresholding estimator, and linear shrinkage estimator across

all (p, ζ,N) combinations. Nonetheless, to eclipse the nonlinear shrinkage estimator, the quality

4Numerical performance is assessed through the comparison of
∥∥∥Σ̂−Σ

∥∥∥
•
, incorporating both the Frobenius

norm and the Matrix 2-norm.
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of the information needs to be comparably higher. Specifically, the type I error ζ and type II

error 1−p significantly impair the performance of the Network Guided Thresholding Estimator.

In an ideal scenario where (p, ζ) = (1.0, 0.0), we achieve L̂ = L, resulting in exceptionally low

errors. When examining the Network Guided Banding Estimator, it exhibits smaller norms

than all other purely statistical methods, assuming the accuracy rate parameter η is not exces-

sively low. Particularly, with η = 0.6, the Network Guided Banding Estimator demonstrates

superiority for most (N, T ) combinations, notably when N ≥ T . With comparable informa-

tion quality, the Network Guided Banding Estimator typically outshines the Network Guided

Thresholding Estimator, aligning with theoretical expectations. Our objective is not to pit the

two Network Guided estimators against each other as it would not constitute a fair comparison;

the Network Guided Banding Estimator necessitates auxiliary information that discloses the

relative significance of neighbors for each node, rendering this method applicable. Panel B

is devoted to the scenario where the true covariance matrix is a sparse matrix without order

(Model 2). In this context, both Network Guided estimators continue to outshine the com-

petition, assuming the auxiliary network information is of sufficient quality. Given that our

Network Guided Banding Estimator is adaptable to a broader spectrum of “bandable” matri-

ces, it proves to be effective in the settings of Model 2. Its performance remains outstanding,

provided that the accuracy rate parameter η is not unduly low. Notably, with η = 0.6, the

Network Guided Banding Estimator surpasses other methods across all (N, T ) combinations.

Similar to the previous model, the Network Guided Thresholding Estimator exhibits strong

performance, particularly when the incidence of Type I errors is minimized.

In summary, our simulation exercise underscores the exceptional numerical properties of

the proposed Network Guided estimators. Both estimators consistently outperform their coun-

terparts, contingent upon the adequacy of the auxiliary network information.
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Table 3: Simulation Results: Error Comparison of Different Estimators. We compare our methods with some benchmarks, including Sample Covariance matrix

(Sample), Soft Thresholding (S-Thres.), Hard Thresholding (H-Thres.), Linear Shrinkage (L-Shrin.) and Non-linear Shrinkage (N-Shrin.). Note that Non-linear

Shrinkage method only works when T > N . For every method, 100 times of simulations are made, thus we give the mean and standard deviation.

Setting
Network Guided Thresholding Network Guided Banding Benchmarks

(0.3, 0.1) (0.6, 0.1) (0.9, 0.1) (1.0, 0.0) η = 0.3 η = 0.6 η = 0.9 η = 1.0 Sample S-Thres. H-Thres. L-Shrin. N-Shrin.

• Panel A: Model 1, banded matrix with ordering

N = 100

∥·∥F
14.77 11.46 7.14 3.59 13.97 10.74 5.91 3.04 14.47 16.56 16.43 12.25 7.56

(0.07) (0.10) (0.17) (0.25) (0.26) (0.39) (0.48) (0.32) (0.32) (0.03) (0.76) (0.19) (0.30)

∥·∥2
6.83 4.45 2.05 1.34 6.44 4.23 2.02 1.28 4.47 8.74 8.66 3.74 3.59

(0.17) (0.29) (0.31) (0.31) (0.28) (0.37) (0.31) (0.36) (0.40) (0.04) (0.48) (0.32) (0.39)

N = 300

∥·∥F
28.47 23.00 17.14 6.44 24.65 18.94 10.59 5.40 43.25 29.26 28.86 29.11

(0.13) (0.16) (0.22) (0.24) (0.28) (0.36) (0.46) (0.30) (0.37) (0.04) (1.81) (0.11)

∥·∥2
7.14 4.65 2.59 1.65 6.81 4.58 2.37 1.58 9.13 8.98 8.85 5.63

(0.10) (0.16) (0.21) (0.25) (0.17) (0.24) (0.26) (0.25) (0.41) (0.02) (0.60) (0.16)

N = 500

∥·∥F
39.34 33.66 27.11 8.33 31.96 24.63 13.68 6.96 71.88 37.91 41.10 41.44

(0.13) (0.16) (0.20) (0.21) (0.32) (0.38) (0.44) (0.27) (0.42) (0.03) (12.41) (0.10)

∥·∥2
7.16 4.94 2.95 1.78 6.88 4.69 2.46 1.71 12.72 9.01 9.19 6.30

(0.09) (0.13) (0.13) (0.23) (0.17) (0.23) (0.26) (0.27) (0.38) (0.02) (1.63) (0.10)

• Panel B: Model 2, sparse matrix without ordering

N = 100

∥·∥F
19.69 16.36 12.25 10.93 17.62 14.17 9.56 7.39 25.87 20.49 20.42 16.29 15.25

(0.13) (0.17) (0.26) (0.30) (0.32) (0.49) (0.45) (0.34) (0.44) (0.05) (0.67) (0.25) (0.30)

∥·∥2
7.58 5.14 3.13 2.73 7.26 4.87 2.88 2.26 7.02 9.79 9.72 6.83 5.73

(0.24) (0.30) (0.19) (0.23) (0.30) (0.39) (0.22) (0.24) (0.50) (0.07) (0.59) (0.58) (0.78)

N = 300

∥·∥F
39.84 35.57 31.27 14.22 30.20 24.66 17.39 14.22 83.04 34.86 34.86 33.86

(0.20) (0.26) (0.30) (0.33) (0.29) (0.40) (0.46) (0.33) (0.50) (0.06) (0.06) (0.10)

∥·∥2
7.86 5.73 4.29 2.71 7.39 5.06 3.22 2.71 15.27 9.86 9.86 9.09

(0.19) (0.20) (0.14) (0.22) (0.20) (0.22) (0.17) (0.22) (0.54) (0.05) (0.05) (0.23)

N = 500

∥·∥F
58.38 53.24 48.14 17.96 38.87 31.53 22.21 17.96 136.36 44.96 44.96 44.72

(0.27) (0.28) (0.33) (0.37) (0.29) (0.40) (0.46) (0.37) (0.63) (0.05) (0.05) (0.07)

∥·∥2
8.25 6.02 4.91 2.67 7.30 4.95 3.19 2.67 21.20 9.73 9.73 9.43

(0.17) (0.15) (0.13) (0.22) (0.14) (0.18) (0.16) (0.22) (0.47) (0.04) (0.04) (0.15)
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5 Empirical Study

5.1 Data

5.1.1 Assets Returns

Stocks in our sample are constituent stocks in 2021 of three famous indices in China , namely

HS300 (000300.SH), CSI500 (000905.SH) and CSI800 (000906.SH), which consist of around

300, 500 and 800 stocks individually. The daily returns of the stocks are collected from the

RESSET database, ranged from 2006 to 2021 with the ST stocks excluded. From RESSET

database, we collect the daily return from 2006 - 2021 of these sample stocks.

5.1.2 News Co-mention Linkage Data

We analyzed over millions of articles from the Financial Text Intelligent Analysis Platform of

RESSET and the Juyuan Database, spanning from 2006 to 2021. We selected articles that

mentioned at least one publicly traded company in China’s A-share market, totaling 1,138,247

news pieces left.

Following the approach of Ge et al. (2023), we define news-implied links based on shared

mentions within the same news article. According to readers’ reading habits, we proposed

four methods to identify connectivity among firms, namely one2one_passage, all_passage,

one2one_setence and all_setence approaches. In Table 4, we summarize the differences of

these approaches:

Table 4: News Co-mention Types

Firms Co-mentioned

in the same passage in the same sentence

if more than two firms are co-mentioned all_passage all_sentence

if and only if two firms are co-mentioned one2one_passage one2one_sentence
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At time t, we set the latest τ0 days as the identification window5. For each stock pair (i, j),

we count the number of co-mention Mij under one co-mention type to construct the co-mention

matrix M = (Mij) for i, j = 1, 2, . . . , N .

5.1.3 Analyst Coverage Linkage

In parallel, we explore linkages based on the analyst coverage, termed Analyst. This approach

is supported by literature suggesting that shared analyst attention may indicate fundamental

connections between companies, reflecting similarities over various dimensions (see Ali and

Hirshleifer (2020), Israelsen (2016) and Kaustia and Rantala (2013)). We utilized the data

from the Chinese Research Data Services Platform (CNRDS), covering analyst reports from

January 2005 to December 2020. After the data cleaning, we identified 530,696 unique analyst

reports to trace connections based on shared coverage. Starting from 2006, at time t. we use

a one-year lag identification window for linkage construction. Similar to the news co-mention

linkage, for each stock pair (i, j), we count the number of coverage Mij during the identification

window to build the analyst co-coverage connection matrix M = (Mij) for i, j = 1, 2, . . . , N .

5.1.4 Industry-based Linkage

Additionally, we examine linkages formed based on industry classifications, marked as

Industry. This approach draws on the findings of Moskowitz and Grinblatt (1999) and En-

gelberg et al. (2018), who noted that stocks within the same sector often move together sig-

nificantly. We analyzed three major industry classification systems in China: CSRC, CITIC,

and Shenwan, updating annually according to the RESSET database. Our primary focus is

the Shenwan primary classification, which is recognized as the leading system within China’s

financial industry.
5Empirically, for the purpose of testing linkage performance under short and long identification windows, τ0

is chosen to be 21 (1 month) or 252 (12 months).

27



We report the summary statistics of these different networks in Table 5. Under sentence_1,

each focal firm has 16 peer firms on average, fewer than 29 peers from article_1. This aligns

with our expectations as the same sentence strategy removes the potential noise links from the

same article strategy, resulting in fewer links identified. Furthermore, the number of peer firms

identified naturally increases with the length of the identification window. For other linkage

types, we generally observe a higher number of links, and each sample stock tends to have more

peers on average.

Table 5: Networks Summary Statistics. The sample stocks include all listed stocks on the main

board of the Shanghai Stock Exchange, Shenzhen Stock Exchange, and Growth Enterprise

Market (GEM). ST shares are excluded.

Link Type Variables Mean Std. Min. Median Max.

all_sentence_1
# Stocks 1332 293 903 1234 2223

# Peer firms 16 32 1 5 454

all_sentence_12
# Stocks 1750 233 1355 1742 2704

# Peer firms 23 42 1 8 631

all_passage_1
# Stocks 1976 229 1478 1952 2816

# Peer firms 29 51 1 10 757

all_passage_12
# Stocks 2122 278 1569 2121 2891

# Peer firms 35 59 1 12 867

analyst
# Stocks 1326 348 476 1429 1872

# Peer firms 98 84 1 75 609

industry
# Stocks 2336 795 1048 2313 3893

# Peer firms 130 83 2 110 364
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5.2 Methodolody

Our goal is to construct GMV portfolio with the help of auxiliary information. This subsection

presents the procedures for the proposed model to be applied. We first de-factor the stock

returns through observable factors. Then, we regard the covariance matrix of focal stocks’ de-

factored returns as static and use the proposed method and sample to estimate. In the training

step, some tuning parameters are validated. Finally, we test the out-of-sample performance of

the proposed models with benchmark models.

5.2.1 CH-4 Factor Model

We adopt CH-4 factors model as in Liu et al. (2019) to de-factor asset returns:

yt = β0 + β1fMKT,t + β2fVMG,t + β3fSMB,t + β4fPMO,t + ut

= β0 +Bft + ut,

(15)

where ft is obtained from the authors’ website. Thus the estimator of Σy = Cov (yt,yt) is

given by

Σ̂y = B̂Σ̂fB̂
⊺ + Σ̂u, (16)

where the factor loading matrix B̂ is obtained by the OLS. Henceforth, our goal is to estimate

the covariance matrix of residuals Σu.

5.2.2 The Estimation of [Lij]N×N and [Cij]N×N

News co-mention, as auxiliary information, can be used to facilitate both Thresholding and

Banding estimation. For the Network Guided Thresholding, we also set a thresholding m

for the news co-mention times. For a pair of stocks i and j, if we have Mij ≥ m in the

identification window, then L̂ij = 1. Generally, we estimate the indicator matrix L̂ =
(
L̂ij

)
as L̂ij = 1{Mij≥m}, where the tuning parameter m is chosen by the in-sample cross validation.

Empirically, the objective function for the in-sample training is the GMV portfolio.
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As for the Network Guided Banding Estimation, the news co-mention connection is ready

to use since it provides integer counts with 0 ≤Mij <∞. Therefore, we set Ĉ =M and apply

our network-guided procedure introduced in Section 2.

The analyst co-coverage data have exactly the same properties as the news co-mention

data, and therefore, all the procedures are identical as described above. As a comparison, the

industry-based linkage is a 0-1 indicator, where Mij = 1{i and j are in the same industry}.

Therefore, we do not need to choose the tuning parameter m as we did for the news co-mention

and analyst co-coverage linkages. For Network Guided Thresholding, we directly have L̂ij =Mij

while for Network Guided Banding, we have {i ∈ S
cj
k , j ∈ Sci

k } if and only if stock i, j are in

the same industry.

5.2.3 Comparing the Out-of-sample Portfolios

As discussed in Engle et al. (2019) and Chen et al. (2019), constructing a global minimum

variance (GMV) portfolio is a desirable way to assess the performance covariance matrix esti-

mators. Compared to the optimal mean-variance (MV) portfolio, a global minimum variance

(GMV) portfolio can avoid the estimation of asset mean returns, which contributes consider-

able noise. Therefore, we apply the proposed method to a portfolio management problem in

this part. In particular, we compare the performance of GMV portfolios as in Ledoit and Wolf

(2004). The theoretical weights for a GMV portfolio are given by

wGMV =
Σ−1

y 1

1⊺Σ−1
y 1

,

where Σy is the estimated covariance matrix of asset returns with 1 the conforming vector

of ones. Given the factor structure asset returns, we have Σ̂y = B̂Σ̂fB̂
⊺ + Σ̂u. The co-

movement part can be straightforwardly estimated by the CH4 factor model, and our goal is to

show that the proposed method can better estimate Σ̂u and contribute to the GMV portfolio

performance. Based on rolling window manners, which started in 2012, we take one year of data
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for model training and substitute the in-sample results for a one-month test. We will continue

this procedure until the end of 2021 and summarize the one-month out-of-sample performance.

Namely, the portfolio is adjusted monthly for nine years in total.

Besides, for robustness test, we still consider the Maximal Return portfolio for any given

variance level σ2
0 and Minimal Variance portfolio for any given expected return level µ0. Recall

the construction of classical optimal portfolio, for example, given a return constraint µ0, we

have the minimization problem:

minw⊺Σyw s.t. w⊺µ ≥ µ0,

where µ = E (yt), and the weight is given by

w (µ0) =
1

|Ψ|
·
[
(ψ22 − ψ12µ0)Σ

−1
y 1+ (ψ11µ0 − ψ12)Σ

−1
y µ

]
,

where the matrix Ψ is defined as

Ψ =

ψ11 ψ12

ψ21 ψ22

 =

1⊺Σ−1
y 1 1⊺Σ−1

y µ

µ⊺Σ−1
y 1 µ⊺Σ−1

y µ

 ,

details and proofs can be found in Chapter 1.6 of Linton (2019). Given the factor structure

assets returns, we have µ̂ = β̂0 + B̂f̄ and Σ̂y = B̂Σ̂fB̂
⊺ + Σ̂u as discussed before. By the

weight formula, the minimal variance given µ0 is

σ2
0 = w (µ0)

⊺ Σw (µ0) =
1

|Ψ|
(
ψ11µ

2
0 − 2ψ12µ0 + ψ22

)
,

which also gives the mean-variance efficient frontier set {(σ0, µ0) , µ0 ≥ 0}. Starting from maxi-

mization problem for any given σ2
0 leads to the same efficient frontier. But note that the efficient

frontier is in-sample, and when we set a fixed in-sample σ0 or µ0, the out-of-sample portfolio

may give different values of standard deviation and mean return, which lead to out-of-sample

efficient frontier. Similar to GMV portfolio, we choose tuning parameters via in-sample training

and construct the out-of-sample efficient frontiers under different models.

Importantly, although most of the estimated covariance matrices are positive definite, we

modify all non-positive definite covariance matrices Σ̂u by the method given in Equation 12.
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5.3 Empirical Results

5.3.1 Comparing GMV Portfolios

Table 6 reports the out-of-sample volatility (measured by standard deviation) of GMV portfolios

constructed by different methods and stock samples, including constituent stocks of the HS300,

CSI500, and CSI800 indices. We also summarize benchmark models as follows:

• Sample: Use the sample covariance matrix of Σ̂u with positive definite correction if

non-positive.

• Linear Shrinkage: Operate linear shrinkage of Ledoit and Wolf (2004) on Σ̂u with

positive definite correction if non-positive.

• Factor Only: Take B̂Σ̂fB̂
⊺ + diag{σ̂2

1, · · · , σ̂2
N} as Σ̂y.

• Equal Weights: Take equal weights 1
N

of N assets as the out-of-sample GMV portfolios.

The overall results are shown in Panel A, where ‘Best Thresholding’ and ‘Best Banding’ are

portfolios with the best performance from different auxiliary information, detailed in Panel B

(Network Guided Thresholding) and Panel C (Network Guided Banding), respectively. The

best connection information for Network Guided Thresholding is one2one_passage_12 while

for the Network Guided Banding is one2one_passage_1.

From the benchmarks presented in Panel A, it is evident that the ‘Factors Only’ approach

consistently outperforms the ‘Sample’ method across all indices. This suggests that the co-

movement part can excellently model the covariance of asset returns, with the sample covariance

matrix of idiosyncratic risk being noisy. However, it is notable that the ‘Linear Shrinkage’

method offers a competitive, if not superior, reduction in standard deviation compared to

‘Factors Only’, especially for the CSI500 index, highlighting the potential of shrinkage methods

in improving portfolio efficiency.
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In the realm of Network Guided Estimation, the results exhibit a varied performance land-

scape. For the Network Guided Thresholding method (Panel B), incorporating analyst and

industry network information leads to a noticeable improvement in the HS300 and CSI800

indices but shows a mixed effect on CSI500, suggesting that the effectiveness of network infor-

mation varies over different groups of stocks. Furthermore, different network structures, such

as one2one_sentence and all_passage, provide insights into how the granularity and context

of network connections influence the estimation accuracy.

The Network Guided Banding approach (Panel C) generally shows an improvement over

the traditional and network-thresholding methods for the HS300 index, mainly when using the

analyst and industry networks. This underscores the importance of the quality and type

of network information in enhancing covariance matrix estimation. The mixed results across

different indices and network structures suggest that while network information is valuable, its

application needs to be tailored to specific market conditions and characteristics.
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Table 6: Out-of-sample Standard Deviation of GMV Portfolios. We compare different portfolios’ out-of-sample standard deviations, most of which are GMV portfolios

constructed based on certain covariance matrix estimators. ‘Sample’ refers to a simple sample estimator of Σu, ‘Factors Only’ to setting Σ̂u = diag{σ̂2
1 , · · · , σ̂2

N}, and

‘Equal Weights’ to a simple equal-weights portfolio instead of GMV.

Index Out-of-sample Standard Deviation of GMV Portfolios Under Different Estimators

• Panel A: Overall

Sample Linear Shrinkage Factors Only Equal Weights Best Thresholding Best Banding

HS300 0.0513 0.0480 0.0440 0.0717 0.0426 0.0445

CSI500 0.0739 0.0703 0.0732 0.0820 0.0683 0.0731

CSI800 0.0593 0.0575 0.0547 0.0769 0.0499 0.0532

• Panel B: Network Guided Thresholding

analyst industry all_passage_1 all_sentence_1 one2one_passage_1 one2one_sentence_12

HS300 0.0507 0.0472 0.0457 0.0457 0.0447 0.0470

CSI500 0.0722 0.0760 0.0685 0.0683 0.0686 0.0684

CSI800 0.0558 0.0604 0.0508 0.0503 0.0505 0.0510

one2one_sentence_1 all_passage_12 all_sentence_12 one2one_passage_12

HS300 0.0448 0.0508 0.0452 0.0426

CSI500 0.0685 0.0756 0.0700 0.0687

CSI800 0.0506 0.0582 0.0499 0.0500

• Panel C: Network Guided Banding

analyst industry all_passage_1 all_sentence_1 one2one_passage_1 one2one_sentence_12

HS300 0.0460 0.0462 0.0483 0.0469 0.0445 0.0489

CSI500 0.0742 0.0731 0.0756 0.0733 0.0744 0.0768

CSI800 0.0598 0.0571 0.0558 0.0556 0.0532 0.0537

one2one_sentence_1 all_passage_12 all_sentence_12 one2one_passage_12

HS300 0.0467 0.0488 0.0504 0.0513

CSI500 0.0737 0.0741 0.0735 0.0765

CSI800 0.0538 0.0605 0.0588 0.0547
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5.3.2 Other Mean-Variance Portfolios

For robustness, we also test other optimal portfolios under different covariance matrix estima-

tions. To avoid extreme situations (N is too small or too large), we choose constituent stocks

of CSI500 index to delve into optimal portfolio tests. We calculate the out-of-sample efficient

frontiers via different methods, which are shown in the Figure 2 with returns and volatility are

all annualized.

Figure 2: Out-of-sample Efficient Frontiers

In Figure 2, we can see that the Network Guided Thresholding method reaches the minimal

variance, which matches the results in the Table 6. But when including out-of-sample per-

formance, the portfolio constructed by Network Guided Banding dominates Network Guided

Thresholding as well as all other baseline models. Besides Thresholding and Banding, only ‘Fac-

tor’ method performs significantly better than the ‘Equal Weights’ portfolio. Linear Shrinkage

is not well performing when σ is low, but outperforms ‘Factor’ method when σ is relatively

high. Finally, Sample covariance matrix is perfected dominated when constructing mean-

variance portfolios in our study, which stresses the necessity of modifying of the estimation of

large covariance matrix.

35



Table 7: Portfolios Performances Given Out-of-sample Standard Deviations.

Out-sample-sample Statistics
Benchmarks Network Guided

Sample Linear Shrinkage Factors Only Equal Weights Best Thresholding Best Banding

Std. = 26%
Mean 6.11% 9.13% 13.16% 15.02% 19.46%

Sharpe 0.120 0.236 0.391 0.462 0.633

Std. = 27%
Mean 6.44% 9.72% 13.56% 15.38% 19.98%

Sharpe 0.127 0.249 0.391 0.459 0.629

Std. = 28%
Mean 6.66% 10.23% 13.85% 15.70% 20.37%

Sharpe 0.131 0.258 0.388 0.454 0.620

Std. = 28.41%
Mean 6.74% 10.42% 13.96% 11.23% 15.82% 20.51%

Sharpe 0.131 0.261 0.386 0.290 0.451 0.616

Std. = 29%
Mean 6.84% 10.68% 14.10% 15.99% 20.70%

Sharpe 0.132 0.265 0.383 0.448 0.610

Std. = 30%
Mean 7.00% 11.09% 14.32% 16.26% 21.00%

Sharpe 0.133 0.270 0.377 0.442 0.600

Std. = 31%
Mean 7.15% 11.48% 14.52% 16.52% 21.27%

Sharpe 0.134 0.273 0.372 0.436 0.589
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Table 7 reports the portfolios performances for some given out-of-sample σ, results are

consistent with the Figure 2. We also compared the Sharpe ratio under given portfolio volatility,

where Network Guided portfolios have higher Sharpe ratios, with Network Guided Banding the

best.

Furthermore, we analyse maximal Sharpe Ratio portfolios (or Mean-Variance optimal port-

folios) under different models. We search the efficient frontier depicted in Figure 2 and find the

mean-variance optimal results for each model to compare. Figure 3 plots the backtest perfor-

mances over 10-year out-of-sample window of these portfolios, and the evaluation statistics are

presented in Table 8. For simplicity, the tuning parameters are substituted by the results from

the GMV portfolios. Unfortunately, due to the crash of the Chinese stock market during May

and June 2015, no portfolio gets a decent Sharpe ratio higher than 1. But compared to other

four benchmarks, Network Guided portfolios perform better in the whole period, especially

the Banding one. For return and standard deviation, ‘Factor’ method is close to our Network

Guided Thresholding, but ‘Factor’ method tends to produce higher maximum drawdown. Net-

work Guided Banding portfolio provides the best performance in our backtest, with the highest

return and the lowest maximum draw-down.

Figure 3: Out-of-sample Mean-Variance Optimal Portfolios
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Table 8: Mean-Variance Optimal Portfolios Performances

Sample Linear Shrinkage Factors Only Equal Weights Thresholding Banding

Mean Return 7.25% 14.71% 13.42% 11.23% 14.68% 19.47%

Std. Dev. 31.77% 41.04% 26.59% 28.41% 25.20% 26.02%

Sharpe Ratio 0.134 0.285 0.392 0.290 0.464 0.633

Max Draw-down 78.24% 91.07% 77.60% 58.90% 72.79% 56.85%

In conclusion, these results affirm the utility of incorporating network information into

covariance matrix estimation for portfolio optimization. Since the factor model can only capture

the strong or global co-movement among asset returns while the auxiliary information dissects

the weak or local effects among focal stock and its peers, as discussed in Ge et al. (2022). This

is the main reason that auxiliary information helps the estimation of Σ̂u However, they also

highlight the complexity and contextual nature of financial markets, where the effectiveness

of such information can vary across different environments and conditions. Future research

could delve deeper into the mechanisms behind these variations and explore the integration of

additional types of network data to refine the estimation process further.

6 Conclusion

In the era of big data, we are gaining access to more and more auxiliary information apart

from the observations of {Xt}Tt=1, which can potentially help us to improve the performance of

conventional statistical and econometric models. We give different revenues for how to incor-

porate information from other sources to enhance the estimation of large covariance matrix of

asset returns. According to the types of auxiliary information, we tailor them to fit the conven-

tional thresholding and banding estimators. We also provide theoretical results to show that

the proposed methods have better properties with the help of extra information. Both simula-

tion studies and empirical illustrations validate that the proposed estimators are outstanding
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compared with many benchmark models.

In this paper, we mainly discuss the static covariance matrix. However, we suggest that

a similar idea can be extended to many other settings, like the estimation of large dynamic

covariance matrices. For example, dynamic network information could be well incorporated

into the conditioning information set in Chen et al. (2019).
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Appendices

A Proof of Theorem 1

Proof . We rationally have the decomposition
∥∥∥Σ̂T

L̂
−Σ

∥∥∥ ≤
∥∥∥Σ̂T

L̂
− Σ̂T

L

∥∥∥ +
∥∥∥Σ̂T

L − Σ̃T
L

∥∥∥ +∥∥∥Σ̃T
L −ΣT

L

∥∥∥ +
∥∥ΣT

L −Σ
∥∥, where Σ̃ = 1

T

∑T
t=1 utu

⊺
t is the non-observable sample covariance

matrix. However, please note our thresholding is set for R, thus, it is necessary to consider

∥∥∥R̂T
L̂
−R

∥∥∥ ≤
∥∥∥R̂T

L̂
− R̂T

L

∥∥∥+ ∥∥∥R̂T
L − R̃T

L

∥∥∥+ ∥∥∥R̃T
L −RT

L

∥∥∥+ ∥∥RT
L −R

∥∥ .
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The first part is the distance between the ”real thresholding” correlation matrix and ”estimated

thresholding” correlation matrix, which is different from the other parts, we leave it to be

bounded finally.

For the second part, we have

∥∥∥R̂T
L − R̃T

L

∥∥∥ ≤ max
1≤i≤N

N∑
j=1

|sL,λ (r̂ij)− sL,λ (r̃ij)|

≤ max
1≤i≤N

N∑
j=1

{
|r̂ij − r̃ij| · I{Lij=1} + |sλ (r̂ij)− sλ (r̃ij)| · I{Lij=0}

}
≤ c1 max

i,j
|r̂ij − r̃ij|+ max

1≤i≤N

N∑
j=1

|sλ (r̂ij)− sλ (r̃ij)| · I{Lij=0}

≤ c1 max
i,j

|r̂ij − r̃ij|+ max
1≤i≤N

N∑
j=1

{
(|sλ (r̂ij)− r̂ij|+ |r̂ij − r̃ij|+ |sλ (r̃ij)− r̃ij|) · I{Lij=0}

}
≤ c1 max

i,j
|r̂ij − r̃ij|+ max

1≤i≤N

N∑
j=1

{
(|r̂ij|+ |r̂ij − r̃ij|+ |r̃ij|) · I{Lij=0}

}
≤ c1 max

i,j
|r̂ij − r̃ij|+ 2 max

1≤i≤N

N∑
j=1

{
(|r̂ij − r̃ij|+ |r̃ij|) · I{Lij=0}

}
.

We consider an event A2,1 = {maxi,j |σ̂ij − σ̃ij| > MaT} for some large M , Fan et al. (2011)

proved that P (A2,1) = O
(

1
N2 + κ1 (N, T )

)
in their Lemma A.3. Besides, we define

A2,2 =

{
max
1≤i≤N

N∑
j=1

L0
ij |σ̂ij − σ̃ij| > aT

}
,

A2,3 =

{
max
1≤i≤N

N∑
j=1

L0
ij |σ̃ij| > max

1≤i≤N

N∑
j=1

L0
ij |σij|+ aT

}
,

which are both bounded by O (κ3 (N, T )) from Assumption 2. Besides, we consider an

event A2,4 =

{
maxi,j |σ̂ij − σij| > A

√
logN
T

}
for some large A, Fan et al. (2011) proved that

P (A2,4) = O
(

1
N2

)
in their Lemma A.3. Then consider function g (σij, σii, σjj) =

σij√
σiiσjj

who

has bounded partial derivatives, which yields

|g (σ̂ij, σ̂ii, σ̂jj)− g (σ̃ij, σ̃ii, σ̃jj)| ≤ O (d1 |σ̂ij − σ̃ij|+ d2 |σ̂ii − σ̃ii|+ d3 |σ̃ii − σ̃jj|) ,

also bounded by O (maxi,j |σ̂ij − σ̃ij|). Similarly, maxi,j |r̂ij − r̃ij| ≤ O (maxi,j |σ̂ij − σ̃ij|). Thus
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in the set Ac
2 = Ω− (A2,1 ∩ A2,2 ∩ A2,3 ∩ A2,4), we have

∥∥∥R̂T
L − R̃T

L

∥∥∥ ≤ c1 max
i,j

|r̂ij − r̃ij|+ 2 max
1≤i≤N

N∑
j=1

{
(|r̂ij − r̃ij|+ |r̃ij|) · I{Lij=0}

}
≤ c1AaT + 2aT + 2 max

1≤i≤N
|r̃ij| · I{Lij=0}

≤ c1AaT + 4aT + 2 max
1≤i≤N

|rij| · I{Lij=0}

≤ c1AaT + 4aT + 2 max
1≤i≤N

|rij|1−q |rij|q · I{Lij=0}

≤ A′aT + 2λ1−qc0 (N) ≤ A′′ (λ1−qc0 (N) + aT
)
,

which yields for some large A,

P
(∥∥∥R̂T

L − R̃T
L

∥∥∥ > A
(
c0 (N)λ1−q + aT

))
= O

(
1

N2
+ κ1 (N, T ) + κ3 (N, T )

)
. (17)

Be careful it is necessary to let Ac
2,4 happen since we need to bounded the partial derivatives

of g.

For the third part, we have

∥∥∥R̃T
L −RT

L

∥∥∥ ≤ max
1≤i≤N

N∑
j=1

|sL,λ (r̃ij)− sL,λ (rij)|

≤ max
1≤i≤N

N∑
j=1

{
|r̃ij − rij| · I{Lij=1} + |sλ (r̃ij)− sλ (rij)| · I{Lij=0}

}
≤ max

1≤i≤N

N∑
j=1

{
|r̃ij − rij| · I{Lij=1} + (|sλ (r̃ij)− r̃ij|+ |r̃ij − rij|+ |sλ (rij)− rij|) · I{Lij=0}

}
≤ max

1≤i≤N

N∑
j=1

{
|r̃ij − rij| · I{Lij=1} + (|r̃ij|+ |rij|+ |r̃ij − rij|) · I{Lij=0}

}
≤ c1 ·max

i,j
|r̃ij − rij|+ max

1≤i≤N

N∑
j=1

{
2 (|r̃ij|+ |rij|) · I{Lij=0}

}
.
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Thus in the set Ac
3 = Ω− (A2,3 ∩ A2,4), we have

∥∥∥R̃T
L −RT

L

∥∥∥ ≤ c1 ·max
i,j

|r̃ij − rij|+ max
1≤i≤N

N∑
j=1

{
2 (|r̃ij|+ |rij|) · I{Lij=0}

}
≤ c1 (N)A

√
logN

T
+ 4 max

1≤i≤N

N∑
j=1

|rij| · I{Lij=0} + 2aT

≤ c1 (N)A

√
logN

T
+ 4λ1−q max

1≤i≤N

N∑
j=1

|rij|q · I{Lij=0} + 2aT

≤ c1 (N)A

√
logN

T
+ 4λ1−qc0 (N) + 2aT

≤ A′

(
c1 (N)

√
logN

T
+ λ1−qc0 (N) + aT

)
,

which yields that

P

(∥∥∥Σ̃T
L −ΣT

L

∥∥∥ > A

(
c1 (N)

√
logN

T
+ c0 (N)λ1−q + aT

))
= O

(
1

N2
+ κ3 (N, T )

)
, (18)

for some large A.

For the fourth part, we have

∥∥RT
L −R

∥∥ ≤ max
1≤i≤N

N∑
j=1

|sL,λ (rij)− rij| = max
1≤i≤N

N∑
j=1

|sλ (rij)− rij| · I{Lij=0}

≤ max
1≤i≤N

N∑
j=1

|rij| · I{Lij=0} = max
1≤i≤N

N∑
j=1

|rij|q |rij|1−q · I{Lij=0}

≤ λ1−q max
1≤i≤N

N∑
j=1

|rij|qI{Lij=0} ≤ λ1−qc0 (N) .

(19)

Now turn back to the first part, which is the only one part including L̂, we have

∥∥∥R̂T
L̂
− R̂T

L

∥∥∥ ≤ max
1≤i≤N

N∑
j=1

∣∣∣sL̂,λ (r̂ij)− sL,λ (r̂ij)
∣∣∣

≤ max
1≤i≤N

N∑
j=1

|sλ (r̂ij)− r̂ij| · I{L̂ij ̸=Lij}

≤ max
1≤i≤N

N∑
j=1

|r̂ij| · I{L̂ij ̸=Lij}.

We define

A1,1 =

{
max
1≤i≤N

N∑
j=1

I{Lij=1,L̂ij=0} > aT c1

}
,
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whose probability is bounded by O(κ2(N, T )). Thus in the set Ac
1 = Ω − (A1,1 ∩ A2,2 ∩ A2,3),

we have

max
1≤i≤N

N∑
j=1

|r̂ij | · I{L̂ij ̸=Lij} = max
1≤i≤N

N∑
j=1

|r̂ij | · I{L̂ij=0,Lij=1} + max
1≤i≤N

N∑
j=1

|r̂ij | · I{L̂ij=1,Lij=0}

≤ aT c1 ·max
i,j

|r̂ij |+ max
1≤i≤N

N∑
j=1

|r̂ij | · I{Lij=0}

≤ aT c1 ·max
i,j

(|r̂ij − r̃ij |+ |r̃ij − rij |+ |rij |) +
N∑
j=1

(|r̂ij − r̃ij |+ |r̃ij |) · I{Lij=0}

≤ A
(
aT + λ1−qc0 (N)

)
,

which yields that for large A,

P
(∥∥∥R̂T

L̂
− R̂T

L

∥∥∥ > A
(
aT + c0 (N)λ1−q

))
= O (κ2 (N, T ) + κ3 (N, T )) . (20)

Finally, collecting Equation (20), Equation (17), Equation (18) and Equation (19), we get

P

(∥∥∥R̂T
L̂
−R

∥∥∥ > A

(
c1 (N)

√
logN

T
+ c0 (N))λ1−q + aT

))
= O

(
1

N2
+ κ1 (N,T ) + κ2 (N,T ) + κ3 (N,T )

)
.

Now we look bakc to Σ, importantly, when Ac
2,4 happens, we know

∥∥∥D̂ −D
∥∥∥ = O

(
A
√

logN
T

)
and since ∥∥∥Σ̂T

L̂
−Σ

∥∥∥ =
∥∥∥D̂R̂T

L̂
D̂ −DRD

∥∥∥ =
∥∥∥D̂ (R̂T

L̂
−R

)
D̂ + D̂RD̂ −DRD

∥∥∥
≤
∥∥∥D̂ (R̂T

L̂
−R

)
D̂
∥∥∥+ ∥∥∥D̂RD̂ −DRD

∥∥∥ ,
and the first part is bounded by O

(∥∥∥R̂T
L̂
−R

∥∥∥) provided σii < M and the event Ac
2,4 happens,

as well as the second part

∥∥∥D̂RD̂ −DRD
∥∥∥ ≤

∥∥∥D̂R(D̂ −D
)∥∥∥+ ∥∥∥(D̂ −D

)
RD

∥∥∥ ≤ O

(
A

√
logN

T

)
,

we have

P

(∥∥∥Σ̂T
L̂
−Σ

∥∥∥ > A

(∥∥∥R̂T
L̂
−R

∥∥∥+√ logN

T

))
= O

(
1

N2

)
.

In conclusion, since c1 (N) → ∞, we get

P

(∥∥∥Σ̂T
L̂
−Σ

∥∥∥ > A

(
c1 (N)

√
logN

T
+ c0 (N)λ1−q + aT

))
= O

(
1

N2
+ κ1 (N,T ) + κ2 (N,T ) + κ3 (N,T )

)
,

which ends the proof.
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B Proof of Theorem 2

Proof . We have the decomposition

∥∥∥R̂B
Ĉ
−R

∥∥∥ ≤
∥∥∥R̂B

Ĉ
−RB

Ĉ

∥∥∥+ ∥∥RB
Ĉ
−RB

C

∥∥+ ∥∥RB
C −R

∥∥ .
The first part is ∥∥∥R̂B

Ĉ
−RB

Ĉ

∥∥∥ ≤ max
1≤i≤N

N∑
j=1

∣∣∣bĈ,k (r̂ij)− bĈ,k (rij)
∣∣∣

= max
1≤i≤N

N∑
j=1

|r̂ij − rij| I{
i∈S

ĉj
k ,j∈Sĉi

k

}

≤ k max
1≤i≤N

|r̂ij − rij| ,

thus in the event Bc
1 = Ω − (A2,1 ∩ A2,4), one may have

∥∥∥R̂B
Ĉ
−RB

Ĉ

∥∥∥ ≤ O

(
k
√

logN
T

)
, and

P (B1) = O
(

1
N2 + κ1 (N, T )

)
, which yieds

P

(∥∥∥R̂B
Ĉ
−RB

Ĉ

∥∥∥ > A · k
√

logN

T

)
= O

(
1

N2
+ κ1 (N, T )

)
. (21)

We leave the second part, and for the third part, we have

∥∥RB
C −R

∥∥ ≤ max
1≤i≤N

N∑
j=1

|bC,k (rij)− rij|

≤ max
1≤i≤N

N∑
j=1

|rij|
(
I{i/∈Scj

k } + I{j /∈Sci
k }
)

≤ max
1≤i≤N

N∑
j=1

|rij| I{i/∈Scj
k ,j∈Sci

k } + max
1≤i≤N

N∑
j=1

|rij| I{j /∈Sci
k }

≤ b1 (N) + b0 (N) k−α.

(22)

For the second part, we have
∥∥∥RB

Ĉ
−RB

C

∥∥∥ ≤ max1≤i≤N

∑N
j=1

∣∣∣bĈ,k (rij)− bC,k (rij)
∣∣∣. We

know
∣∣∣bĈ,k (rij)− bC,k (rij)

∣∣∣ can only be 0 or |rij|, thus we can focus on in which situations it

becomes |rij|, i.e., when Ĉ and C are different enough to make bĈ,k (rij) has different quantity

from bC,k (rij). Specifically, when i ∈ S
cj
k and j ∈ Sci

k however i /∈ S
ĉj
k or j ∈ S ĉi

k , or i /∈ S
cj
k or
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j /∈ Sci
k but i ∈ S

ĉj
k and j ∈ S ĉi

k ,
∣∣∣bĈ,k (rij)− bC,k (rij)

∣∣∣ becomes |rij|. Thus, one may get

N∑
j=1

∣∣∣bĈ,k (rij)− bC,k (rij)
∣∣∣ = N∑

j=1

|rij| I{
(i,j)∈S

cj
k ×S

ci
k ,(i,j)/∈S

ĉj
k ×S

ĉi
k

} +
N∑
j=1

|rij| I{
(i,j)/∈S

cj
k ×S

ci
k ,(i,j)∈S

ĉj
k ×S

ĉi
k

}

≤
N∑
j=1

|rij| I{
(i,j)∈S

cj
k ×S

ci
k ,(i,j)/∈S

ĉj
k ×S

ĉi
k

} +
N∑
j=1

|rij| I{(i,j)/∈Scj
k ×S

ci
k }

≤
N∑
j=1

|rij|

(
I{

i∈S
cj
k ,i/∈S

ĉj
k

} + I{
j∈Sci

k ,j /∈Sĉi
k

}
)

+ c1 (N) + c0 (N) k−α

≤ 2k

√
logN

T
+ b1 (N) + b0 (N) k−α

(23)

with probability at least 1− κ4 (N, T ).

Combining Equation (21), Equation (23) and Equation (22) one may get

P

(∥∥∥R̂B
Ĉ
−R

∥∥∥ > A

(
k

√
logN

T
+ b0 (N) k−α + b1 (N)

))
= O

(
1

N2
+ κ1 (N, T ) + κ4 (N, T )

)

holds for C large enough. Thus similar to the thresholding estimator, provided σii < M , we

have

P

(∥∥∥Σ̂B
Ĉ
−Σ

∥∥∥ > A

(
k

√
logN

T
+ b0 (N) k−α + b1 (N)

))
= O

(
1

N2
+ κ1 (N, T ) + κ4 (N, T )

)
,

where one should note that k = kN → ∞ is a common setting (see the remark after Theorem

2).
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