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Paper question

@ Economist like unobserved heterogeneity and dynamic factor
models.

o Usually discrete mixtures of parametric distributions (derived
from theory)

@ For identification and also estimation, it is useful to consider
discrete mixtures of nonparametric models.

o This paper proposes a simple estimation procedure for discrete

mixtures and hidden Markov models of nonparametric
distribution components.
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Identification

@ The question of identification in latent structures is the topic of a
very recent and active literature.

@ Nonparametric identification from univariate/cross-sectional data
typically fails. (Some exceptions for location models)

o Multivariate data (panel data) can present a powerful
identification source.

@ Finite mixtures/latent-class models: Hall and Zhou (2003);
Allman et al. (2009)

© (Dynamic) discrete-choice models: Magnac and Thesmar (2002);
Kasahara and Shimotsu (2009)

© Hidden Markov/regime-switching models: Allman et al. (2009);
Gassiat et al. (2013)

© Models for corrupted and misclassified data: Schennach (2004);
Hu and Schennach (2008)
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Contribution

We propose a new constructive identification argument...

that delivers a least square-type estimator for mixture
weights...

allowing for asymptotic distributional theory.
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Discrete mixtures of discrete distributions

e Let (yi,...,Yq) be g discrete variables with supp(y;) = {1, ...,k }.
@ There exists a latent variable x € {1,...,r} with 7; = Pr{x = j}.

e Let pjj € [0,1]% denote the vector of conditional probability
masses of y; given x = j:

pii(k) =Pr{yi=k|x=j}, k=1,..,K
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Unconditional distribution for DMs

e The unconditional joint PDF of (y1,...,yq) is

P(y1,...¥q) = Zr: Tip1(y1)p2;(y2) - - - Pgi(Vq)

e The set of values P(y1,...,yq) for all (y1,...,yq) defines a
g-dimensional array

r
P=) mp1®p2®:®py
j=1

e ® is the Kronecker product
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Hidden Markov models

@ There are g discrete latent variables (xi,...,xg) for ¢
measurements (y1, ..., Yg)-

o Stationarity:

Prixi=j} =m, i=1,...,q
Pr{Xi+1|Xi} = K(Xi7Xi+1)7 = 1, g — 1
Priyi=kixi=j} =pj(k), k=1,...,x

e Conditional independence: measurements y1, ..., yq are
independent conditional on (xg, ..., Xq).
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Unconditional distribution for HHMs (1)

@ The unconditional joint PDF of (yi,...,y3) is

P(y1,y2,¥3)

-y {mlpjl(yl)_i

=1 =1

— i {li P (y1 761K(11712)] Pix(y2) lz KJz,J3)pj3(y3)]}
Jo=1

1=1 3=1

K(1,42)Pjp(y2) i K(jz,js)Pja(%)] }

Jj3=1
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Unconditional distribution for HHMs (2)

e Let P=[p1,...,pr] € R**" and N = diag(my, ..., 7).

@ Hence the 3-dimensional array

P=Y (PTIK); ® p; ® (PKT)J

j=1
where M; denotes the jth column of matrix M

@ If g > 3 one can select all consecutive triples or regroup
observations into 3 consecutive clusters:

(.y17 -‘-7)/k—1)a}’k,(}/k+17---a}’q)-
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Identification of such latent array structures

Kruskal (Psychometrica 1976, Linear Algebra Appl. 1977)

o Consider a k1 X K» X k3 array P = Y71 p1; ® pa; ® ps;
o Let P, = [p,-1,...,p,-r] eR&*rj=1,2,3

@ Let r; = max{k : all collections of k columns of P; are
independent} (the Kruskal-rank of P;).

e Note that if P € R¥*" has rank r it also has Kruskal-rank r.
o If 1+ rn+r3 > 2r+ 2 then PP uniquely determines the matrices

P; up to simultaneous column-permutation and common
column-scaling.
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Application to statistics

Allman, Matias and Rhodes (AoS, 2009)

o Allman et al. use Kruskal’s result to give conditions for the
identification of discrete mixtures of discrete and continuous
nonparametric distributions, hidden Markov models and some
stochastic graphs.
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Discrete mixtures

Allman, Matias and Rhodes (AoS, 2009)

o Kruskal’s theorem applies with

P =) mip1® p2j ® psj

r
=1
Py = [mip11, ..., ®ep1r], Pi = [pits s Pir)s i > 1

@ (Corollary 2) Since sum(Py,1) = [my,..., 7] and
sum(P;,1) =[1,...,1],7 > 1, then, if 1 +r+r3 > 2r+2,
group-probabilities 7; and conditional probabilities p;; are
identified up to labeling.

@ (Theorem 8) Holds for continuous mixture components if the
component densities are linearly independent (r; = r» = r3 =r).
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HMMs

Allman, Matias and Rhodes (AoS, 2009), Theorem 6

@ The parameters of an HMM with r hidden states and k
observable states are generically identifiable from the marginal
distribution of 2k + 1 consecutive variables provided k satisfies

<k+ K— 1> S,
K—1 -
@ Note that (k:fz 1) = K for k = 1 (3 measurements) and
<k+1<—1

1 > = k+ 1 for ¥ = 2 (binary outcomes).
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Application to HMMs

Gassiat, Cleynen, Robin (arXiv, 2013), Theorem 2.1

@ They use Allman et al.’s result to prove the following result.

@ Assume that r is known, P = [py, ..., p/] is full column rank, and
K has full rank. Then K and P are identifiable from from the
distribution of 3 consecutive observations (Y1, y2,y3) up to label
swapping of the hidden states.

e Estimation by penalized ML or EM algorithm.
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Constructive identification procedures

There exists few constructive identification procedures.

@ De Lathauwer (SIAM, 2006) applies to the case where one
outcome (say y1) is such that P; is full column rank.

However it provides identification only up to relabeling AND
scaling.

Group probabilities 7; are thus not identified.

We propose one such constructive identification that works both
for DMs and HMMs, inspired from ICA or blind deconvolution.
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DMs

o P=Y"17p1j®p2 ® p3j
e Let N = diag(m,..., 7, ), and

P; = [p,-l,...,p,-r] e RR*r j=1,2,3.
@ Assume rank(P;) = r and 7; > 0.
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DMs

,Dl|'|PT = Zj:l TFjPlegTj = Zj:l Tip1j @ p2j is the matrix
containing probabilities P(y;, y»). Observable.

SVD on Pll_IPQT , which has rank r, allows to construct U and V/
such that

U PP VT =1, = (VP) =(UPN) T =Q!
rxKi Ko Xr rXr
P(:,: k) = Xj1 Tp1j ® p2;j ® p3j(k) = PN D3, Py, with
D3y = diag[p31(k), ..., p3r(k)], is the matrix containing
probabilities P(y1, y», k) (for any y1,y» and y3 = k). Also
observable.

Wi = UP(:,:, k)VT = QD3, Q! (whitening)

P3 identified by the eigenvalues of matrices Wi, ..., Wi,
Repeat for P; and P».

T = [m;...; 7] identified from P(y;) = X7, 7;p;(vi) = Px

Bonhomme, Jochmans, Robin Nonparametric spectral-based estimation of latent structures



DMs

PP = ijl njpljp;j = ijl 7ip1j ® poj is the matrix
containing probabilities P(y;, y»). Observable.

SVD on PP, , which has rank r, allows to construct U and V
such that

U PP VT =1 = (VP) = (UPN) T =Q !
rxKy Ko Xr rXr
P(:,: k) = Xj1 Tp1j ® p2j ® p3j(k) = P1MN D3, Py, with
D3y = diag[p31(k), ..., p3r(k)], is the matrix containing
probabilities P(y1, y2, k) (for any yi, y» and y3 = k). Also
observable.

Wy = UP(:,:, k) VT = QD3 Q! (whitening)

Ps identified by the eigenvalues of matrices Wi, ..., Wi,
Repeat for P; and P».

T = [m;...; 7] identified from P(y;) = X7, 7;p;(vi) = Px
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DMs

PP = ijl njpljp;j = ijl 7ip1j ® poj is the matrix
containing probabilities P(y;, y»). Observable.

SVD on PP, , which has rank r, allows to construct U and V
such that

U PINP, VI =1, = (VP)" =(UPN) = Q1
rxXKi Ko Xr rxr
P(:,: k) = Xj1 Tp1j ® p2;j ® p3j(k) = PN D3, Py, with
D3y = diag[p31(k), ..., p3r(k)], is the matrix containing
probabilities P(y1, 2, k) (for any yi, y» and y3 = k). Also
observable.

Wi = UP(:,:, k)VT = QD3, Q! (whitening)

P3 identified by the eigenvalues of matrices Wi, ..., Wi,
Repeat for P; and P».

T = [m;...; m,] identified from P(y;) = Zle mipi(yi) = P
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o P=Y/,(PNK);®p®(PK");, N=diag(m,..,m)

e Assume K full rank, P = [p1,..., pr] € R**" full column rank
and 7; > 0.
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@ One can put all P(y1, y2,y3) for fixed y» € {1,...,x} in the matrix
P(:, k,:) = POKDy KP", Dy = diag(p1(k),..., p-(k))

o Note that the matrix PITK?P" is the matrix containing
probabilities P(y1, y3).

@ SVD on PMK2PT, which has rank r, allows to construct U and
V such that

U POK2PTVT =1, & KPTVT = (PNK) 1= Q!

rxXKi Ko Xr rxr

Wy = UP(:,k,:)VT = QD, Q@ (whitening)
P identified by the eigenvalues of matrices Wi, ..., Wi

7 identified from P(y1) = Y./ m;pj(y1) = Px
e K identified from P(y1,y>) = PNKPT
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@ One can put all P(y1, y2,y3) for fixed y» € {1,...,x} in the matrix
P(:, k,:) = POKDy KP", Dy = diag(p1(k),..., p-(k))

@ Note that the matrix PITK2P" is the matrix containing
probabilities P(y1, y3).

@ SVD on PMK2PT, which has rank r, allows to construct U and
V such that

U PNK2PTVT =1, & KPTVT = (PNK) '= Q!

rxXKi Ko Xr rxr

Wy = UP(:,k,:)VT = QD, Q@ (whitening)
P identified by the eigenvalues of matrices Wi, ..., Wi

7 identified from P(y1) = Y./ m;pj(y1) = Px
e K identified from P(y1,y>) = PNKPT
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@ One can put all P(y1, y2,y3) for fixed y» € {1,...,x} in the matrix
P(:, k,:) = POKDy KP", Dy = diag(p1(k),..., p-(k))
o Note that the matrix PITK?P" is the matrix containing
probabilities P(y1, y3).
@ SVD on PMK2PT, which has rank r, allows to construct U and
V such that
U POK2PTVT =1, & KPTVT = (PNK) 1= Q!

rxXKi Ko Xr rxr

Wi = UP(:,k,:)V" = QD, Q! (whitening)
P identified by the eigenvalues of matrices W4, ..., Wi

7 identified from P(y1) = Y./ m;pj(y1) = Px
e K identified from P(y1,y>) = PNKPT
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@ One can put all P(y1, y2,y3) for fixed y» € {1,...,x} in the matrix
P(:, k,:) = POKDy KP", Dy = diag(p1(k),..., p-(k))

o Note that the matrix PITK?P" is the matrix containing
probabilities P(y1, y3).

@ SVD on PMK2PT, which has rank r, allows to construct U and
V such that

U POK2PTVT =1, & KPTVT = (PNK) 1= Q!

rxXKi Ko Xr rxr

Wy = UP(:,k,:)VT = QD, Q@ (whitening)
P identified by the eigenvalues of matrices Wi, ..., Wi

7 identified from P(y1) = Y.i_4 m;pj(y1) = Px
e K identified from P(y1,y>) = PNKPT
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One can put all P(y1, y2, y3) for fixed y» € {1,...,x} in the matrix
P(:, k,:) = POKDy KP", Dy = diag(p1(k),..., p-(k))

Note that the matrix P[TK?P ' is the matrix containing
probabilities P(y1, y3).

SVD on PMK2PT, which has rank r, allows to construct U and
V such that

U POK2PTVT =1, & KPTVT = (PNK) 1= Q!
rxKi Ko Xr rxr
Wy = UP(:,k,:)VT = QD, Q@ (whitening)
P identified by the eigenvalues of matrices Wi, ..., Wi
7 identified from P(y1) = ¥.j_; 7pj(v1) = P70
K identified from P(y1,y>) = PNKPT
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Estimation procedure

@ Matrices W) thus have to be simultaneously diagonalized.

@ Approximate joint diagonalization by least squares:
K3 5
Q= argm(\i)n Z H Wy — QDkalHF, Dy = diag[Qfl WkQ}
k=1
o Algorithm in Iferroudjene, Abed-Meraim and Belouchrani

(Applied Math. and Computation, 2009)
o Advantage of LS: asymptotic theory is possible

20/29
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Continuous outcomes

@ Requires discretization

@ We use orthogonal polynomials (Chebychev)
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Discrete mixtures of continuous distributions

@ Conditional PDF of y; given = j:

K; 1
)= Y pieen). i) = [ oulw) () du
k=1 -
® (k) complete orthonormal set of functions:

[ 9e)p(r)ay =&

@ Three observations:
.
Fy1,y2.y3) = Y mifi()fj(y2) f(v3)

j=1

,
= ) Tp1j @ p2j ® ps3j

j=1

e Note that sum(p;;) # 1. Yet the identification algorithm
continues to work.
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Asymptotic theory

e Standard convergence rates because the weights are root-n
consistent

@ Extends to hidden Markov models for continuous outcomes
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Example: DMs of continuous distributions

Simulation

@ We generate data from a heterogenous mixture of beta
distributions on [—1, 1]

° r:2;q:3;71'1:7'52:%

@ Chebychev polynomials of the first kind for ¢;.

@ Orthogonal-series estimators are not bona fide. Adjust estimates
ex post via Gajek’s (1986) projection procedure.
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n =500
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n =500 n=1000
mean std mean std
T %) a0 V(%) Y40 V(%) T V%)
i=1 .5133 .4794 .0257 .0260 .5090 .4869 .0186 .0186
i=2 .5130 .4854 .0300 .0301 .5092 .4895 .0204 .0205
i=3 .4978 .4948 .0319 .0320 .4980 .4989 .0231 .0229
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Example: HMMs

o Stationary probit model for a binary state variable
st = 1{st_1 > &}, &~ A(0,1),
and suppose that,
f(ye|st =0) ~ left-skewed Beta, f(yt|st = 1) ~right-skewed Beta

o Steady state gives Pr[s; = 0] ~ } and K(0,0) = 3, K(1,0) ~ %

@ Most draws are from dominant regime (s; = 1).

27129
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State process

parameter value mean std
Pr[s =1] .7591 .7255 .0755
Pr[st =0] .2409 .2554 .0786

K(0,0) .5000 .5731 .3056
0,1) .5000 .3913 .3494
1,0) .1587 .1352 .0587
1,1) .8413 .8500 .0608
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