
Nonparametric spectral-based estimation of latent
structures

Stéphane Bonhomme (Chicago), Koen Jochmans (Sciences Po)
and J.-M. Robin (Sciences Po and UCL)

May 27, 2014

1 / 29 Bonhomme, Jochmans, Robin Nonparametric spectral-based estimation of latent structures



Paper question

Economist like unobserved heterogeneity and dynamic factor
models.

Usually discrete mixtures of parametric distributions (derived
from theory)

For identification and also estimation, it is useful to consider
discrete mixtures of nonparametric models.

This paper proposes a simple estimation procedure for discrete
mixtures and hidden Markov models of nonparametric
distribution components.
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Identification

The question of identification in latent structures is the topic of a
very recent and active literature.

Nonparametric identification from univariate/cross-sectional data
typically fails. (Some exceptions for location models)

Multivariate data (panel data) can present a powerful
identification source.

1 Finite mixtures/latent-class models: Hall and Zhou (2003);
Allman et al. (2009)

2 (Dynamic) discrete-choice models: Magnac and Thesmar (2002);
Kasahara and Shimotsu (2009)

3 Hidden Markov/regime-switching models: Allman et al. (2009);
Gassiat et al. (2013)

4 Models for corrupted and misclassified data: Schennach (2004);
Hu and Schennach (2008)
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Contribution

We propose a new constructive identification argument...

that delivers a least square-type estimator for mixture
weights...

allowing for asymptotic distributional theory.
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Discrete mixtures of discrete distributions

Let (y1, ...,yq) be q discrete variables with supp(yi ) = {1, ...,κi}.
There exists a latent variable x ∈ {1, ..., r} with πj ≡ Pr{x = j}.
Let pij ∈ [0,1]κi denote the vector of conditional probability
masses of yi given x = j :

pij(k)≡ Pr{yi = k |x = j}, k = 1, ...,κi
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Unconditional distribution for DMs

The unconditional joint PDF of (y1, ...,yq) is

P(y1, ...,yq) =
r

∑
j=1

πjp1j(y1)p2j(y2) . . .pqj(yq)

The set of values P(y1, ...,yq) for all (y1, ...,yq) defines a
q-dimensional array

P =
r

∑
j=1

πjp1j �p2j � · · ·�pqj

� is the Kronecker product
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Hidden Markov models

There are q discrete latent variables (x1, ...,xq) for q
measurements (y1, ...,yq).

Stationarity:

Pr{xi = j} = πj , i = 1, ...,q
Pr{xi+1|xi}= K (xi ,xi+1), i = 1, ...,q−1

Pr{yi = k |xi = j}= pj(k), k = 1, ...,κ

Conditional independence: measurements y1, ...,yq are
independent conditional on (x1, ...,xq).
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Unconditional distribution for HHMs (1)

The unconditional joint PDF of (y1, ...,y3) is

P(y1,y2,y3)

=
r

∑
j1=1

{
πj1pj1(y1)

r

∑
j2=1

[
K (j1, j2)pj2(y2)

r

∑
j3=1

K (j2, j3)pj3(y3)

]}

=
r

∑
j2=1

{[
r

∑
j1=1

pj1(y1)πj1K (j1, j2)

]
pj2(y2)

[
r

∑
j3=1

K (j2, j3)pj3(y3)

]}
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Unconditional distribution for HHMs (2)

Let P = [p1, ...,pr ] ∈ Rκ×r and Π = diag(π1, ...,πr ).

Hence the 3-dimensional array

P =
r

∑
j=1

(PΠK )j �pj �
(
PK>

)
j

where Mj denotes the j th column of matrix M
If q > 3 one can select all consecutive triples or regroup
observations into 3 consecutive clusters:
(y1, ...,yk−1),yk ,(yk+1, ...,yq).
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Identification of such latent array structures
Kruskal (Psychometrica 1976, Linear Algebra Appl. 1977)

Consider a κ1×κ2×κ3 array P = ∑
r
j=1 p1j �p2j �p3j

Let Pi = [pi1, ...,pir ] ∈ Rκi×r , i = 1,2,3
Let ri = max{k : all collections of k columns of Pi are
independent} (the Kruskal-rank of Pi ).

Note that if P ∈ Rκ×r has rank r it also has Kruskal-rank r .

If r1 + r2 + r3 ≥ 2r +2 then P uniquely determines the matrices
Pi up to simultaneous column-permutation and common
column-scaling.
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Application to statistics
Allman, Matias and Rhodes (AoS, 2009)

Allman et al. use Kruskal’s result to give conditions for the
identification of discrete mixtures of discrete and continuous
nonparametric distributions, hidden Markov models and some
stochastic graphs.
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Discrete mixtures
Allman, Matias and Rhodes (AoS, 2009)

Kruskal’s theorem applies with

P =
r

∑
j=1

πjp1j �p2j �p3j

P1 = [π1p11, ...,πrp1r ],Pi = [pi1, ...,pir ], i > 1

(Corollary 2) Since sum(P1,1) = [π1, ...,πr ] and
sum(Pi ,1) = [1, ...,1], i > 1, then, if r1 + r2 + r3 ≥ 2r +2,
group-probabilities πj and conditional probabilities pij are
identified up to labeling.

(Theorem 8) Holds for continuous mixture components if the
component densities are linearly independent (r1 = r2 = r3 = r ).
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HMMs
Allman, Matias and Rhodes (AoS, 2009), Theorem 6

The parameters of an HMM with r hidden states and κ

observable states are generically identifiable from the marginal
distribution of 2k +1 consecutive variables provided k satisfies(

k + κ−1
κ−1

)
≥ r

Note that
(

k + κ−1
κ−1

)
= κ for k = 1 (3 measurements) and(

k + κ−1
κ−1

)
= k +1 for κ = 2 (binary outcomes).
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Application to HMMs
Gassiat, Cleynen, Robin (arXiv, 2013), Theorem 2.1

They use Allman et al.’s result to prove the following result.

Assume that r is known, P = [p1, ...,pr ] is full column rank, and
K has full rank. Then K and P are identifiable from from the
distribution of 3 consecutive observations (y1,y2,y3) up to label
swapping of the hidden states.

Estimation by penalized ML or EM algorithm.
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Constructive identification procedures

There exists few constructive identification procedures.

De Lathauwer (SIAM, 2006) applies to the case where one
outcome (say y1) is such that P1 is full column rank.

However it provides identification only up to relabeling AND
scaling.

Group probabilities πj are thus not identified.

We propose one such constructive identification that works both
for DMs and HMMs, inspired from ICA or blind deconvolution.
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DMs

P = ∑
r
j=1 πjp1j �p2j �p3j

Let Π = diag(π1, ...,πr ), and
Pi = [pi1, ...,pir ] ∈ Rκi×r , i = 1,2,3.

Assume rank(Pi ) = r and πj > 0.
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DMs

P1ΠP>2 = ∑
r
j=1 πjp1jp>2j = ∑

r
j=1 πjp1j �p2j is the matrix

containing probabilities P(y1,y2). Observable.
SVD on P1ΠP>2 , which has rank r , allows to construct U and V
such that

U
r×κ1

P1ΠP>2 V>
κ2×r

= Ir ⇒ (VP2)> = (UP1Π)−1 ≡ Q−1

r×r

P(:, :,k) = ∑
r
j=1 πjp1j �p2j �p3j(k) = P1ΠD3kP>2 , with

D3k = diag[p31(k), ...,p3r (k)], is the matrix containing
probabilities P(y1,y2,k) (for any y1,y2 and y3 = k). Also
observable.
Wk = UP(:, :,k)V> = QD3kQ−1 (whitening)
P3 identified by the eigenvalues of matrices W1, ...,Wκ3

Repeat for P1 and P2.
π = [π1; ...;πr ] identified from P(yi ) = ∑

r
j=1 πjpij(yi ) = Pπ
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HMMs

P = ∑
r
j=1 (PΠK )j �pj �

(
PK>

)
j , Π = diag(π1, ...,πr )

Assume K full rank, P = [p1, ...,pr ] ∈ Rκ×r full column rank
and πj > 0.
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HMMs

One can put all P(y1,y2,y3) for fixed y2 ∈ {1, ...,κ} in the matrix
P(:,k , :) = PΠKD2kKP>, D2k = diag(p1(k), ...,pr (k))

Note that the matrix PΠK 2P> is the matrix containing
probabilities P(y1,y3).

SVD on PΠK 2P>, which has rank r , allows to construct U and
V such that

U
r×κ1

PΠK 2P>V>
κ2×r

= Ir ⇔ KP>V> = (PΠK )−1 ≡ Q−1

r×r

Wk = UP(:,k , :)V> = QDkQ−1 (whitening)

P identified by the eigenvalues of matrices W1, ...,Wκ

π identified from P(y1) = ∑
r
j=1 πjpj(y1) = Pπ

K identified from P(y1,y2) = PΠKP>
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Estimation procedure

Matrices Wk thus have to be simultaneously diagonalized.

Approximate joint diagonalization by least squares:

Q = argmin
Q

κ3

∑
k=1

∥∥Wk −QDkQ−1∥∥2
F , Dk ≡ diag

[
Q−1WkQ

]
Algorithm in Iferroudjene, Abed-Meraim and Belouchrani
(Applied Math. and Computation, 2009)

Advantage of LS: asymptotic theory is possible
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Continuous outcomes

Requires discretization

We use orthogonal polynomials (Chebychev)
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Discrete mixtures of continuous distributions

Conditional PDF of yi given = j :

fij(y)'
κi

∑
k=1

pij(k)ϕk(y), pij(k) =
∫ 1

−1
ϕκ (u) fij(u)du

(ϕk) complete orthonormal set of functions:∫
ϕk(y)ϕ`(y)ρ(y)dy = δk`

Three observations:

f (y1,y2,y3) =
r

∑
j=1

πj f1j(y1)f2j(y2)f3j(y3)

'
r

∑
j=1

πjp1j �p2j �p3j

Note that sum(pij) 6= 1. Yet the identification algorithm
continues to work.

22 / 29 Bonhomme, Jochmans, Robin Nonparametric spectral-based estimation of latent structures



Asymptotic theory

Standard convergence rates because the weights are root-n
consistent

Extends to hidden Markov models for continuous outcomes
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Example: DMs of continuous distributions
Simulation

We generate data from a heterogenous mixture of beta
distributions on [−1,1]

r = 2; q = 3; π1 = π2 = 1
2

Chebychev polynomials of the first kind for φi .

Orthogonal-series estimators are not bona fide. Adjust estimates
ex post via Gajek’s (1986) projection procedure.
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n = 500
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Proportions

n = 500 n = 1000
mean std mean std

π1 π2 π1 π2 π1 π2 π1 π2

i = 1 .5133 .4794 .0257 .0260 .5090 .4869 .0186 .0186
i = 2 .5130 .4854 .0300 .0301 .5092 .4895 .0204 .0205
i = 3 .4978 .4948 .0319 .0320 .4980 .4989 .0231 .0229
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Example: HMMs

Stationary probit model for a binary state variable

st = 1{st−1 ≥ εt}, εt ∼N (0,1),

and suppose that,

f (yt |st = 0)∼ left-skewed Beta, f (yt |st = 1)∼ right-skewed Beta

Steady state gives Pr[st = 0]≈ 1
4 and K (0,0) = 1

2 , K (1,0)≈ 1
6 .

Most draws are from dominant regime (st = 1).
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State process

parameter value mean std
Pr[st = 1] .7591 .7255 .0755
Pr[st = 0] .2409 .2554 .0786

K (0,0) .5000 .5731 .3056
K (0,1) .5000 .3913 .3494
K (1,0) .1587 .1352 .0587
K (1,1) .8413 .8500 .0608
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