Nonparametric spectral-based estimation of latent structures

Stéphane Bonhomme (Chicago), Koen Jochmans (Sciences Po) and J.-M. Robin (Sciences Po and UCL)

May 27, 2014

Paper question

- Economist like unobserved heterogeneity and dynamic factor models.
- Usually discrete mixtures of parametric distributions (derived from theory)
- For identification and also estimation, it is useful to consider discrete mixtures of nonparametric models.
- This paper proposes a simple estimation procedure for discrete mixtures and hidden Markov models of nonparametric distribution components.

Identification

- The question of identification in latent structures is the topic of a very recent and active literature.
- Nonparametric identification from univariate/cross-sectional data typically fails. (Some exceptions for location models)
- Multivariate data (panel data) can present a powerful identification source.
(1) Finite mixtures/latent-class models: Hall and Zhou (2003); Allman et al. (2009)
(2) (Dynamic) discrete-choice models: Magnac and Thesmar (2002); Kasahara and Shimotsu (2009)
(3) Hidden Markov/regime-switching models: Allman et al. (2009); Gassiat et al. (2013)
(9) Models for corrupted and misclassified data: Schennach (2004); Hu and Schennach (2008)

Contribution

We propose a new constructive identification argument... that delivers a least square-type estimator for mixture weights...
allowing for asymptotic distributional theory.

Discrete mixtures of discrete distributions

- Let $\left(y_{1}, \ldots, y_{q}\right)$ be q discrete variables with $\operatorname{supp}\left(y_{i}\right)=\left\{1, \ldots, \kappa_{i}\right\}$.
- There exists a latent variable $x \in\{1, \ldots, r\}$ with $\pi_{j} \equiv \operatorname{Pr}\{x=j\}$.
- Let $p_{i j} \in[0,1]^{\kappa_{i}}$ denote the vector of conditional probability masses of y_{i} given $x=j$:

$$
p_{i j}(k) \equiv \operatorname{Pr}\left\{y_{i}=k \mid x=j\right\}, \quad k=1, \ldots, \kappa_{i}
$$

Unconditional distribution for DMs

- The unconditional joint PDF of $\left(y_{1}, \ldots, y_{q}\right)$ is

$$
\mathbb{P}\left(y_{1}, \ldots, y_{q}\right)=\sum_{j=1}^{r} \pi_{j} p_{1 j}\left(y_{1}\right) p_{2 j}\left(y_{2}\right) \ldots p_{q j}\left(y_{q}\right)
$$

- The set of values $\mathbb{P}\left(y_{1}, \ldots, y_{q}\right)$ for all $\left(y_{1}, \ldots, y_{q}\right)$ defines a q-dimensional array

$$
\mathbb{P}=\sum_{j=1}^{r} \pi_{j} p_{1 j} \otimes p_{2 j} \otimes \cdots \otimes p_{q j}
$$

- \otimes is the Kronecker product

Hidden Markov models

- There are q discrete latent variables $\left(x_{1}, \ldots, x_{q}\right)$ for q measurements $\left(y_{1}, \ldots, y_{q}\right)$.
- Stationarity:

$$
\begin{gathered}
\operatorname{Pr}\left\{x_{i}=j\right\}=\pi_{j}, \quad i=1, \ldots, q \\
\operatorname{Pr}\left\{x_{i+1} \mid x_{i}\right\}=K\left(x_{i}, x_{i+1}\right), \quad i=1, \ldots, q-1 \\
\operatorname{Pr}\left\{y_{i}=k \mid x_{i}=j\right\}=p_{j}(k), \quad k=1, \ldots, \kappa
\end{gathered}
$$

- Conditional independence: measurements y_{1}, \ldots, y_{q} are independent conditional on $\left(x_{1}, \ldots, x_{q}\right)$.

Unconditional distribution for HHMs (1)

- The unconditional joint PDF of $\left(y_{1}, \ldots, y_{3}\right)$ is

$$
\begin{aligned}
& \mathbb{P}\left(y_{1}, y_{2}, y_{3}\right) \\
= & \sum_{j_{1}=1}^{r}\left\{\pi_{j_{1}} p_{j_{1}}\left(y_{1}\right) \sum_{j_{2}=1}^{r}\left[K\left(j_{1}, j_{2}\right) p_{j_{2}}\left(y_{2}\right) \sum_{j_{3}=1}^{r} K\left(j_{2}, j_{3}\right) p_{j_{3}}\left(y_{3}\right)\right]\right\} \\
= & \sum_{j_{2}=1}^{r}\left\{\left[\sum_{j_{1}=1}^{r} p_{j_{1}}\left(y_{1}\right) \pi_{j_{1}} K\left(j_{1}, j_{2}\right)\right] p_{j_{2}}\left(y_{2}\right)\left[\sum_{j_{3}=1}^{r} K\left(j_{2}, j_{3}\right) p_{j_{3}}\left(y_{3}\right)\right]\right\}
\end{aligned}
$$

Unconditional distribution for HHMs (2)

- Let $P=\left[p_{1}, \ldots, p_{r}\right] \in \mathbb{R}^{\kappa \times r}$ and $\Pi=\operatorname{diag}\left(\pi_{1}, \ldots, \pi_{r}\right)$.
- Hence the 3-dimensional array

$$
\mathbb{P}=\sum_{j=1}^{r}(P \sqcap K)_{j} \otimes p_{j} \otimes\left(P K^{\top}\right)_{j}
$$

where M_{j} denotes the j th column of matrix M

- If $q>3$ one can select all consecutive triples or regroup observations into 3 consecutive clusters:

$$
\left(y_{1}, \ldots, y_{k-1}\right), y_{k},\left(y_{k+1}, \ldots, y_{q}\right) .
$$

- Consider a $\kappa_{1} \times \kappa_{2} \times \kappa_{3}$ array $\mathbb{P}=\sum_{j=1}^{r} p_{1 j} \otimes p_{2 j} \otimes p_{3 j}$
- Let $P_{i}=\left[p_{i 1}, \ldots, p_{i r}\right] \in \mathbb{R}^{\kappa_{i} \times r}, i=1,2,3$
- Let $r_{i}=\max \left\{k\right.$: all collections of k columns of P_{i} are independent $\}$ (the Kruskal-rank of P_{i}).
- Note that if $P \in \mathbb{R}^{\kappa \times r}$ has rank r it also has Kruskal-rank r.
- If $r_{1}+r_{2}+r_{3} \geq 2 r+2$ then \mathbb{P} uniquely determines the matrices P_{i} up to simultaneous column-permutation and common column-scaling.

Application to statistics

Allman, Matias and Rhodes (AoS, 2009)

- Allman et al. use Kruskal's result to give conditions for the identification of discrete mixtures of discrete and continuous nonparametric distributions, hidden Markov models and some stochastic graphs.

Discrete mixtures

- Kruskal's theorem applies with

$$
\begin{aligned}
\mathbb{P} & =\sum_{j=1}^{r} \pi_{j} p_{1 j} \otimes p_{2 j} \otimes p_{3 j} \\
P_{1} & =\left[\pi_{1} p_{11}, \ldots, \pi_{r} p_{1 r}\right], P_{i}=\left[p_{i 1}, \ldots, p_{i r}\right], i>1
\end{aligned}
$$

- (Corollary 2) Since $\operatorname{sum}\left(P_{1}, 1\right)=\left[\pi_{1}, \ldots, \pi_{r}\right]$ and $\operatorname{sum}\left(P_{i}, 1\right)=[1, \ldots, 1], i>1$, then, if $r_{1}+r_{2}+r_{3} \geq 2 r+2$, group-probabilities π_{j} and conditional probabilities $p_{i j}$ are identified up to labeling.
- (Theorem 8) Holds for continuous mixture components if the component densities are linearly independent ($r_{1}=r_{2}=r_{3}=r$).

HMMs

- The parameters of an HMM with r hidden states and κ observable states are generically identifiable from the marginal distribution of $2 k+1$ consecutive variables provided k satisfies

$$
\binom{k+\kappa-1}{\kappa-1} \geq r
$$

- Note that $\binom{k+\kappa-1}{\kappa-1}=\kappa$ for $k=1$ (3 measurements) and

$$
\binom{k+\kappa-1}{\kappa-1}=k+1 \text { for } \kappa=2 \text { (binary outcomes). }
$$

Application to HMMs

Gassiat, Cleynen, Robin (arXiv, 2013), Theorem 2.1

- They use Allman et al.'s result to prove the following result.
- Assume that r is known, $P=\left[p_{1}, \ldots, p_{r}\right]$ is full column rank, and K has full rank. Then K and P are identifiable from from the distribution of 3 consecutive observations (y_{1}, y_{2}, y_{3}) up to label swapping of the hidden states.
- Estimation by penalized ML or EM algorithm.

Constructive identification procedures

- There exists few constructive identification procedures.
- De Lathauwer (SIAM, 2006) applies to the case where one outcome (say y_{1}) is such that P_{1} is full column rank.
- However it provides identification only up to relabeling AND scaling.
- Group probabilities π_{j} are thus not identified.
- We propose one such constructive identification that works both for DMs and HMMs, inspired from ICA or blind deconvolution.

DMs

- $\mathbb{P}=\sum_{j=1}^{r} \pi_{j} p_{1 j} \otimes p_{2 j} \otimes p_{3 j}$
- Let $\Pi=\operatorname{diag}\left(\pi_{1}, \ldots, \pi_{r}\right)$, and $P_{i}=\left[p_{i 1}, \ldots, p_{i r}\right] \in \mathbb{R}^{\kappa_{i} \times r}, i=1,2,3$.
- Assume $\operatorname{rank}\left(P_{i}\right)=r$ and $\pi_{j}>0$.

DMs

- $P_{1} \sqcap P_{2}^{\top}=\sum_{j=1}^{r} \pi_{j} p_{1 j} p_{2 j}^{\top}=\sum_{j=1}^{r} \pi_{j} p_{1 j} \otimes p_{2 j}$ is the matrix containing probabilities $\mathbb{P}\left(y_{1}, y_{2}\right)$. Observable.
- SVD on $P_{1} \Pi P_{2}^{\top}$, which has rank r, allows to construct U and V such that

$$
\underset{r \times \kappa_{1}}{U} P_{1} \Pi P_{2}^{\top} \underset{K_{2} \times r}{V^{\top}}=I_{r} \Rightarrow\left(V P_{2}\right)^{\top}=\left(U P_{1} \Pi\right)^{-1} \equiv \underset{r \times r}{Q^{-1}}
$$

- $\mathbb{P}(:,:, k)=\sum_{j=1}^{r} \pi_{j} p_{1 j} \otimes p_{2 j} \otimes p_{3 j}(k)=P_{1} \Pi D_{3 k} P_{2}^{\top}$, with $D_{3 k}=\operatorname{diag}\left[p_{31}(k), \ldots, p_{3 r}(k)\right]$, is the matrix containing probabilities $\mathbb{P}\left(y_{1}, y_{2}, k\right)$ (for any y_{1}, y_{2} and $y_{3}=k$). Also observable.
- $W_{k}=U \mathbb{P}(:,:, k) V^{\top}=Q D_{3 k} Q^{-1}$ (whitening)
- P_{3} identified by the eigenvalues of matrices $W_{1}, \ldots, W_{\kappa_{3}}$
- Repeat for P_{1} and P_{2}.
- $\pi=\left[\pi_{1} ; \ldots ; \pi_{r}\right]$ identified from $\mathbb{P}\left(y_{i}\right)=\sum_{j=1}^{r} \pi_{j} p_{i j}\left(y_{i}\right)=P \pi$

DMs

- $P_{1} \sqcap P_{2}^{\top}=\sum_{j=1}^{r} \pi_{j} p_{1 j} p_{2 j}^{\top}=\sum_{j=1}^{r} \pi_{j} p_{1 j} \otimes p_{2 j}$ is the matrix containing probabilities $\mathbb{P}\left(y_{1}, y_{2}\right)$. Observable.
- SVD on $P_{1} \Pi P_{2}^{\top}$, which has rank r, allows to construct U and V such that

$$
\underset{r \times \kappa_{1}}{U} P_{1} \Pi P_{2}^{\top} \underset{K_{2} \times r}{V^{\top}}=I_{r} \Rightarrow\left(V P_{2}\right)^{\top}=\left(U P_{1} \Pi\right)^{-1} \equiv \underset{r \times r}{Q^{-1}}
$$

- $\mathbb{P}(:,:, k)=\sum_{j=1}^{r} \pi_{j} p_{1 j} \otimes p_{2 j} \otimes p_{3 j}(k)=P_{1} \Pi D_{3 k} P_{2}^{\top}$, with $D_{3 k}=\operatorname{diag}\left[p_{31}(k), \ldots, p_{3 r}(k)\right]$, is the matrix containing probabilities $\mathbb{P}\left(y_{1}, y_{2}, k\right)$ (for any y_{1}, y_{2} and $y_{3}=k$). Also observable.
- $W_{k}=U \mathbb{P}(:,:, k) V^{\top}=Q D_{3 k} Q^{-1}$ (whitening)
- P_{3} identified by the eigenvalues of matrices $W_{1}, \ldots, W_{\kappa_{3}}$
- Repeat for P_{1} and P_{2}.
- $\pi=\left[\pi_{1} ; \ldots ; \pi_{r}\right]$ identified from $\mathbb{P}\left(y_{i}\right)=\sum_{j=1}^{r} \pi_{j} p_{i j}\left(y_{i}\right)=P \pi$

DMs

- $P_{1} \sqcap P_{2}^{\top}=\sum_{j=1}^{r} \pi_{j} p_{1 j} p_{2 j}^{\top}=\sum_{j=1}^{r} \pi_{j} p_{1 j} \otimes p_{2 j}$ is the matrix containing probabilities $\mathbb{P}\left(y_{1}, y_{2}\right)$. Observable.
- SVD on $P_{1} \Pi P_{2}^{\top}$, which has rank r, allows to construct U and V such that

$$
\underset{r \times \kappa_{1}}{U} P_{1} \Pi P_{2}^{\top} \underset{K_{2} \times r}{V^{\top}}=I_{r} \Rightarrow\left(V P_{2}\right)^{\top}=\left(U P_{1} \Pi\right)^{-1} \equiv \underset{r \times r}{Q^{-1}}
$$

- $\mathbb{P}(:,:, k)=\sum_{j=1}^{r} \pi_{j} p_{1 j} \otimes p_{2 j} \otimes p_{3 j}(k)=P_{1} \Pi D_{3 k} P_{2}^{\top}$, with $D_{3 k}=\operatorname{diag}\left[p_{31}(k), \ldots, p_{3 r}(k)\right]$, is the matrix containing probabilities $\mathbb{P}\left(y_{1}, y_{2}, k\right)$ (for any y_{1}, y_{2} and $y_{3}=k$). Also observable.
- $W_{k}=U \mathbb{P}(:,:, k) V^{\top}=Q D_{3 k} Q^{-1}$ (whitening)
- P_{3} identified by the eigenvalues of matrices $W_{1}, \ldots, W_{\kappa_{3}}$
- Repeat for P_{1} and P_{2}.
- $\pi=\left[\pi_{1} ; \ldots ; \pi_{r}\right]$ identified from $\mathbb{P}\left(y_{i}\right)=\sum_{j=1}^{r} \pi_{j} p_{i j}\left(y_{i}\right)=P \pi$

HMMs

- $\mathbb{P}=\sum_{j=1}^{r}(P \Pi K)_{j} \otimes p_{j} \otimes\left(P K^{\top}\right)_{j}, \quad \Pi=\operatorname{diag}\left(\pi_{1}, \ldots, \pi_{r}\right)$
- Assume K full rank, $P=\left[p_{1}, \ldots, p_{r}\right] \in \mathbb{R}^{\kappa \times r}$ full column rank and $\pi_{j}>0$.

HMMs

- One can put all $\mathbb{P}\left(y_{1}, y_{2}, y_{3}\right)$ for fixed $y_{2} \in\{1, \ldots, \kappa\}$ in the matrix $\mathbb{P}(:, k,:)=P \Pi K D_{2 k} K P^{\top}, \quad D_{2 k}=\operatorname{diag}\left(p_{1}(k), \ldots, p_{r}(k)\right)$
- Note that the matrix $P \Pi K^{2} P^{\top}$ is the matrix containing probabilities $\mathbb{P}\left(y_{1}, y_{3}\right)$.
- SVD on $P \sqcap K^{2} P^{\top}$, which has rank r, allows to construct U and V such that

$$
\underset{r \times K_{1}}{\cup} P \Pi K^{2} P^{\top} \underset{K_{2} \times r}{V^{\top}}=I_{r} \Leftrightarrow K P^{\top} V^{\top}=(P \Pi K)^{-1} \equiv \underset{r \times r}{Q^{-1}}
$$

- $W_{k}=U \mathbb{P}(:, k,:) V^{\top}=Q D_{k} Q^{-1}$ (whitening)
- P identified by the eigenvalues of matrices $W_{1}, \ldots, W_{\kappa}$
- π identified from $\mathbb{P}\left(y_{1}\right)=\sum_{j=1}^{r} \pi_{j} p_{j}\left(y_{1}\right)=P \pi$
- K identified from $\mathbb{P}\left(y_{1}, y_{2}\right)=P П K P^{\top}$
- One can put all $\mathbb{P}\left(y_{1}, y_{2}, y_{3}\right)$ for fixed $y_{2} \in\{1, \ldots, \kappa\}$ in the matrix $\mathbb{P}(:, k,:)=P \Pi K D_{2 k} K P^{\top}, \quad D_{2 k}=\operatorname{diag}\left(p_{1}(k), \ldots, p_{r}(k)\right)$
- Note that the matrix $P \Pi K^{2} P^{\top}$ is the matrix containing probabilities $\mathbb{P}\left(y_{1}, y_{3}\right)$.
- SVD on $P \sqcap K^{2} P^{\top}$, which has rank r, allows to construct U and V such that

$$
\underset{r \times K_{1}}{\cup} P \Pi K^{2} P^{\top} \underset{K_{2} \times r}{V^{\top}}=I_{r} \Leftrightarrow K P^{\top} V^{\top}=(P \Pi K)^{-1} \equiv \underset{r \times r}{Q^{-1}}
$$

- $W_{k}=U \mathbb{P}(:, k,:) V^{\top}=Q D_{k} Q^{-1}$ (whitening)
- P identified by the eigenvalues of matrices $W_{1}, \ldots, W_{\kappa}$
- π identified from $\mathbb{P}\left(y_{1}\right)=\sum_{j=1}^{r} \pi_{j} p_{j}\left(y_{1}\right)=P \pi$
- K identified from $\mathbb{P}\left(y_{1}, y_{2}\right)=P П K P^{\top}$
- One can put all $\mathbb{P}\left(y_{1}, y_{2}, y_{3}\right)$ for fixed $y_{2} \in\{1, \ldots, \kappa\}$ in the matrix $\mathbb{P}(:, k,:)=P \Pi K D_{2 k} K P^{\top}, \quad D_{2 k}=\operatorname{diag}\left(p_{1}(k), \ldots, p_{r}(k)\right)$
- Note that the matrix $P \Pi K^{2} P^{\top}$ is the matrix containing probabilities $\mathbb{P}\left(y_{1}, y_{3}\right)$.
- SVD on $P \Pi K^{2} P^{\top}$, which has rank r, allows to construct U and V such that

$$
\underset{r \times K_{1}}{\cup} P \Pi K^{2} P^{\top} \underset{K_{2} \times r}{V^{\top}}=I_{r} \Leftrightarrow K P^{\top} V^{\top}=(P \Pi K)^{-1} \equiv \underset{r \times r}{Q^{-1}}
$$

- $W_{k}=U \mathbb{P}(:, k,:) V^{\top}=Q D_{k} Q^{-1}$ (whitening)
- P identified by the eigenvalues of matrices $W_{1}, \ldots, W_{\kappa}$
- π identified from $\mathbb{P}\left(y_{1}\right)=\sum_{j=1}^{r} \pi_{j} p_{j}\left(y_{1}\right)=P \pi$
- K identified from $\mathbb{P}\left(y_{1}, y_{2}\right)=P П K P^{\top}$
- One can put all $\mathbb{P}\left(y_{1}, y_{2}, y_{3}\right)$ for fixed $y_{2} \in\{1, \ldots, \kappa\}$ in the matrix $\mathbb{P}(:, k,:)=P \Pi K D_{2 k} K P^{\top}, \quad D_{2 k}=\operatorname{diag}\left(p_{1}(k), \ldots, p_{r}(k)\right)$
- Note that the matrix $P \Pi K^{2} P^{\top}$ is the matrix containing probabilities $\mathbb{P}\left(y_{1}, y_{3}\right)$.
- SVD on $P \sqcap K^{2} P^{\top}$, which has rank r, allows to construct U and V such that

$$
\underset{r \times K_{1}}{\cup} P \Pi K^{2} P^{\top} \underset{K_{2} \times r}{V^{\top}}=I_{r} \Leftrightarrow K P^{\top} V^{\top}=(P \Pi K)^{-1} \equiv \underset{r \times r}{Q^{-1}}
$$

- $W_{k}=U \mathbb{P}(:, k,:) V^{\top}=Q D_{k} Q^{-1}$ (whitening)
- P identified by the eigenvalues of matrices $W_{1}, \ldots, W_{\kappa}$
- π identified from $\mathbb{P}\left(y_{1}\right)=\sum_{j=1}^{r} \pi_{j} p_{j}\left(y_{1}\right)=P \pi$
- K identified from $\mathbb{P}\left(y_{1}, y_{2}\right)=P \Pi K P^{\top}$
- One can put all $\mathbb{P}\left(y_{1}, y_{2}, y_{3}\right)$ for fixed $y_{2} \in\{1, \ldots, \kappa\}$ in the matrix $\mathbb{P}(:, k,:)=P \Pi K D_{2 k} K P^{\top}, \quad D_{2 k}=\operatorname{diag}\left(p_{1}(k), \ldots, p_{r}(k)\right)$
- Note that the matrix $P \Pi K^{2} P^{\top}$ is the matrix containing probabilities $\mathbb{P}\left(y_{1}, y_{3}\right)$.
- SVD on $P \sqcap K^{2} P^{\top}$, which has rank r, allows to construct U and V such that

$$
\underset{r \times K_{1}}{\cup} P \Pi K^{2} P^{\top} \underset{K_{2} \times r}{V^{\top}}=I_{r} \Leftrightarrow K P^{\top} V^{\top}=(P \Pi K)^{-1} \equiv \underset{r \times r}{Q^{-1}}
$$

- $W_{k}=U \mathbb{P}(:, k,:) V^{\top}=Q D_{k} Q^{-1}$ (whitening)
- P identified by the eigenvalues of matrices $W_{1}, \ldots, W_{\kappa}$
- π identified from $\mathbb{P}\left(y_{1}\right)=\sum_{j=1}^{r} \pi_{j} p_{j}\left(y_{1}\right)=P \pi$
- K identified from $\mathbb{P}\left(y_{1}, y_{2}\right)=P \Pi K P^{\top}$

Estimation procedure

- Matrices W_{k} thus have to be simultaneously diagonalized.
- Approximate joint diagonalization by least squares:

$$
Q=\arg \min _{Q} \sum_{k=1}^{K_{3}}\left\|W_{k}-Q D_{k} Q^{-1}\right\|_{F}^{2}, \quad D_{k} \equiv \operatorname{diag}\left[Q^{-1} W_{k} Q\right]
$$

- Algorithm in Iferroudjene, Abed-Meraim and Belouchrani (Applied Math. and Computation, 2009)
- Advantage of LS: asymptotic theory is possible

Continuous outcomes

- Requires discretization
- We use orthogonal polynomials (Chebychev)

Discrete mixtures of continuous distributions

- Conditional PDF of y_{i} given $=j$:

$$
f_{i j}(y) \simeq \sum_{k=1}^{\kappa_{i}} p_{i j}(k) \varphi_{k}(y), \quad p_{i j}(k)=\int_{-1}^{1} \varphi_{\kappa}(u) f_{i j}(u) \mathrm{d} u
$$

- $\left(\varphi_{k}\right)$ complete orthonormal set of functions:

$$
\int \varphi_{k}(y) \varphi_{\ell}(y) \rho(y) \mathrm{d} y=\delta_{k \ell}
$$

- Three observations:

$$
\begin{aligned}
f\left(y_{1}, y_{2}, y_{3}\right) & =\sum_{j=1}^{r} \pi_{j} f_{1 j}\left(y_{1}\right) f_{2 j}\left(y_{2}\right) f_{3 j}\left(y_{3}\right) \\
& \simeq \sum_{j=1}^{r} \pi_{j} p_{1 j} \otimes p_{2 j} \otimes p_{3 j}
\end{aligned}
$$

- Note that $\operatorname{sum}\left(p_{i j}\right) \neq 1$. Yet the identification algorithm continues to work.

Asymptotic theory

- Standard convergence rates because the weights are root-n consistent
- Extends to hidden Markov models for continuous outcomes

Example: DMs of continuous distributions Simulation

- We generate data from a heterogenous mixture of beta distributions on $[-1,1]$
- $r=2 ; q=3 ; \pi_{1}=\pi_{2}=\frac{1}{2}$
- Chebychev polynomials of the first kind for ϕ_{i}.
- Orthogonal-series estimators are not bona fide. Adjust estimates ex post via Gajek's (1986) projection procedure.

Proportions

	$n=500$			$n=1000$				
	mean		std	mean		std		
	π_{1}	π_{2}	π_{1}	π_{2}	π_{1}	π_{2}	π_{1}	π_{2}
$i=1$.5133	.4794	.0257	.0260	.5090	.4869	.0186	.0186
$i=2$.5130	.4854	.0300	.0301	.5092	.4895	.0204	.0205
$i=3$.4978	.4948	.0319	.0320	.4980	.4989	.0231	.0229

Example: HMMs

- Stationary probit model for a binary state variable

$$
s_{t}=1\left\{s_{t-1} \geq \varepsilon_{t}\right\}, \quad \varepsilon_{t} \sim \mathscr{N}(0,1)
$$

and suppose that,
$f\left(y_{t} \mid s_{t}=0\right) \sim$ left-skewed Beta,$\quad f\left(y_{t} \mid s_{t}=1\right) \sim$ right-skewed Beta

- Steady state gives $\operatorname{Pr}\left[s_{t}=0\right] \approx \frac{1}{4}$ and $K(0,0)=\frac{1}{2}, K(1,0) \approx \frac{1}{6}$.
- Most draws are from dominant regime $\left(s_{t}=1\right)$.

State process

parameter	value	mean	std
$\operatorname{Pr}\left[s_{t}=1\right]$.7591	.7255	.0755
$\operatorname{Pr}\left[s_{t}=0\right]$.2409	.2554	.0786
$K(0,0)$.5000	.5731	.3056
$K(0,1)$.5000	.3913	.3494
$K(1,0)$.1587	.1352	.0587
$K(1,1)$.8413	.8500	.0608

