skip to content

Faculty of Economics

CWPE Cover

Pesaran, M. H.

Testing Weak Cross-Sectional Dependence in Large Panels


Abstract: This paper considers testing the hypothesis that errors in a panel data model are weakly cross sectionally dependent, using the exponent of cross-sectional dependence , introduced recently in Bailey, Kapetanios and Pesaran (2012). It is shown that the implicit null of the CD test depends on the relative expansion rates of N and T. When T = O , for some , then the implicit null of the CD test is given by , which gives image6, when N and T tend to infinity at the same rate such that T/N , with being a finite positive constant. It is argued that in the case of large N panels, the null of weak dependence is more appropriate than the null of independence which could be quite restrictive for large panels. Using Monte Carlo experiments, it is shown that the CD test has the correct size for values of in the range [0, 1/4], for all combinations of N and T, and irrespective of whether the panel contains lagged values of the dependent variables, so long as there are no major asymmetries in the error distribution.

Keywords: Exponent of cross-sectional dependence, Diagnostic tests, Panel data models, Dynamic heterogenous panels

JEL Codes: C12 C13 C33

Author links: M. Hashem Pesaran  


Open Access Link: